The Pure Virtual Braid Group is Quadratic¹

Let K be a unital algebra over a field \mathbb{F} with char $\mathbb{F} = 0$, and Why Care? let $I \subset K$ be an "augmentation ideal"; so $K/I \xrightarrow{\sim} \mathbb{F}$.

its group ring is, with its augmentation ideal. The Overall Strategy. Consider the "singularity tower" of (K,I) (here "means \otimes_K and (K,I)) s (always) multiplication):

$$\cdots$$
 $I^{:p+1}$ $\xrightarrow{\mu_{p+1}}$ $I^{:p}$ $\xrightarrow{\mu_{p}}$ $I^{:p-1}$ \longrightarrow \cdots \longrightarrow K

We care as $\operatorname{im}(\mu^p = \mu_1 \circ \cdots \circ \mu_p) = I^p$, so $I^p/I^{p+1} = \frac{2 \operatorname{Injectivity}}{2 \operatorname{Injectivity}}$. A (one-sided infinite) sequence $\operatorname{im} \mu^p / \operatorname{im} \mu^{p+1}$. Hence we ask:

How injective is this tower?

• What's $I^{:p}/\mu(I^{:p+1})$?

Lemma. $I^{:p}/\mu(I^{:p+1})\simeq (I/I^2)^{\otimes p}=V^{\otimes p}$ in $\mathcal{T}:\mathcal{T}:\mathcal{T}\to\mathcal{V}$ its "1-reduction"

 $\underbrace{ (K,I) }_{\text{Any}} \underbrace{ \underbrace{ \text{Prop 2}}_{\text{2-local}} \underbrace{ \text{Quadratic}}_{\text{2-local}}$ $K = PvB_n$ Thm S Hutchings Criterion

Proposition 1. The sequence

 $\mathfrak{R}_p := \bigoplus_{i=1}^{p-1} \left(I^{:j-1} : \mathfrak{R}_2 : I^{:p-j-1} \right) \xrightarrow{\partial} I^{:p} \xrightarrow{\mu_p} I^{:p-1}$ Proof.

is $\{w \in F : \deg w > 0\}$. For J_0 it is easy to check that $\mathfrak{R}_2 =$ the degree p piece of q(K). $\Re_p = 0$, and hence the same is true for every J.

The General Case. If $K = F/\langle M \rangle$ (where M is a vector space of "moves") and $I \subset K$, then $I = J/\langle M \rangle$ where $J \subset F$. Then $I^{:p} = J^{:p} / \sum J^{:j-1} : \langle M \rangle : J^{:p-j}$ and we have

$$J:p \xrightarrow{\mu_F} J:p^{-1}$$
onto $\pi_p \xrightarrow{\pi_{p-1}} f$

So $\ker(\mu) = \pi_p \left(\mu_F^{-1}(\ker \pi_{p-1})\right) = \pi_p \left(\sum \mu_F^{-1}(J^::\langle M \rangle:J^:)\right) = \ker(\beta_1 \circ \alpha_0)/\ker \alpha_0 \simeq \ker(\beta_0 \circ \alpha_1)/\ker \alpha_1.$ $\sum \pi_p \left(J^::\mu_F^{-1}\langle M \rangle:J^:\right) = \sum I^::\mathfrak{R}_2:I^:=:\sum_{j=1}^{p-1}\mathfrak{R}_{p,j}.$ Proof. $\frac{\ker(\beta_1 \circ \alpha_0)}{\ker \alpha_0} \xrightarrow{\alpha_0} \ker \beta_1 \cap \operatorname{im} \alpha_0$

 \mathfrak{R}_2 is simpler than may seem! It's $J:2 \xrightarrow{\mu_F} J \supset M$ an "augmentation bimodule" $(I\mathfrak{R}_2 = 0)$ and I are I I are I are I and I are I and I are I and I are I and I are I are I are I are I and I are I are I are I are I and I are I are I and I are I are I and I are I are I are I are I are I and I are I are I are I and I are I are I and I are I are I and I ar $\Re_2 = \pi_2(\mu_F^{-1}M).$

 \mathfrak{R}_p is simpler than may seem! In $\mathfrak{R}_{p,j}=I^{j-1}:\mathfrak{R}_2:I^{p-j-1}$ the I factors may be replaced by $V=I/I^2$. Hence

$$\mathfrak{R}_p \simeq \bigoplus_{j=1}^{p-1} V^{\oplus j-1} \otimes \pi_2(\mu_F^{-1}M) \otimes V^{\otimes p-j-1}.$$

Dror Bar-Natan and Peter Lee in Oregon, August 2011 http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/ foots & refs on PDF version, page 3

 \bullet In abstract generality, $\operatorname{gr} K$ is a simplified version of K and Definition. Say that K is quadratic if its associated graded if it is quadratic it is a simple as it may be without being gr $K = \bigoplus_{p=0}^{\infty} I^p/I^{p+1}$ is a quadratic algebra. Alternatively, let $A = q(K) = \langle V = I/I^2 \rangle / \langle R_2 = \ker(\bar{\mu}_2 : V \otimes V \to I^2/I^3) \rangle$ be the "quadratic approximation" to K (q is a lovely functor). Then K is quadratic iff the obvious $\mu : A \to \operatorname{gr} K$ is an isomorphism. If G is a group, we say it is quadratic if the obvious f is an isomorphism. If G is a group, we say it is quadratic if the obvious f is an isomorphism. is an isomorphism. If G is a group, we say it is quadratic if

	u-Knots and		
K	Braids	v-Knots	w-Knots
	Metrized Lie		Finite dimensional Lie
A	algebras [BN1]	Lie bialgebras [Hav]	algebras [BN3]
		Etingof-Kazhdan	Kashiwara-Vergne-
	Associators	quantization	Alekseev-Torossian
Z	[Dri, BND]	[EK, BN2]	[KV, AT]

$$\cdots \longrightarrow K_{p+1} \xrightarrow{\delta_{p+1}} K_p \xrightarrow{\delta_p} \cdots \longrightarrow K_0 = K$$

is "injective" if for all p > 0, ker $\delta_p = 0$. It is "2-injective" if

$$\cdots \longrightarrow \frac{K_{p+1}}{\ker \delta_{p+1}} \xrightarrow{\bar{\delta}_{p+1}} \frac{\bar{\delta}_{p+1}}{\ker \delta_{p}} \xrightarrow{-\bar{\delta}_{p}} \frac{K_{p-1}}{\ker \delta_{p-1}} \longrightarrow \cdots$$

is injective; i.e. if for all p, $\ker(\delta_p \circ \delta_{p+1}) = \ker \delta_{p+1}$. A pair (K, I) is "2-injective" if its singularity tower is 2-injective.

Proposition 2. If (K, I) is 2-local and 2-injective, it is

 $\mathfrak{R}_{p} := \bigoplus_{j=1}^{r-1} (I^{rj-1} : \mathfrak{R}_{2} : I^{rp-j-1}) \xrightarrow{\qquad} I^{rp} \xrightarrow{\qquad} I^{rp-1} \xrightarrow{\qquad} I^{rp-1}$ is exact, where $\mathfrak{R}_{2} := \ker \mu : I^{r2} \to I$; so (K, I) is "2-local". The Free Case. If J is an augmentation ideal in $K = F = \underbrace{\prod_{I \to p} \ker \mu_{p+1} \atop I^{rp}/\ker \mu_{p+1}} \simeq \underbrace{\prod_{I \to p} \mu_{p} \atop I^{rp}/\ker \mu_{p}} \simeq \underbrace{\prod_{I \to p} \mu_{p} \atop I^{rp}} \simeq (I/I^{2})^{\otimes p}$, so (x_{i}) , define $\psi : F \to F$ by $x_{i} \mapsto x_{i} + \epsilon(x_{i})$. Then $J_{0} := \psi(J)$ the above is $(I/I^{2})^{\otimes p}/\sum_{I} (I^{rj-1} : \mathfrak{R}_{2} : I^{rp-j-1})$. But that's

The X Lemma (inspired by [Hut]).

 $J^{:p} \xrightarrow{\mu_{F}} J^{:p-1} \xrightarrow{J^{:p}} J^{:p-1}$ $\text{onto} \downarrow^{\pi_{p}} \qquad \qquad \qquad \downarrow^{\pi_{p-1}} \downarrow^{\text{onto}}$ $I^{:p} = J^{:p} / \sum J^{:} : \langle M \rangle : J^{:} \xrightarrow{\mu} I^{:p-1} = J^{:p-1} / \sum J^{:} : \langle M \rangle : J^{:}$ $\text{diagonals have the same "2-injectivity defect". That is, if } A_{0} \to B \to C_{0} \text{ and } A_{1} \to B \to C_{1} \text{ are exact, then}$ if $A_0 \rightarrow B \rightarrow C_0$ and $A_1 \rightarrow B \rightarrow C_1$ are exact, then

 $= \ker \beta_0 \cap \operatorname{im} \alpha_1 \leftarrow$

The Hutchings Criterion [Hut]. ∂) = ker(∂). That is, iff every "diagrammatic syzygy" is also a 1:p+1 "topological syzygy".

Conclusion. We need to know that (K, I) is 'syzygy complete" — that every diagrammatic syzygy is also a topological syzygy, that $\ker(\pi \circ \partial) = \ker(\partial)$.







