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Abstract. Following Rozansky [Ro1, Ro2, Ro3] and Overbay [Ov], we construct the first
poly-time-computable knot polynomials since Alexander’s [Al, 1928]. We use some new

commutator-calculus techniques and a family of Lie algebra slďk2 which are solvable yet at
the same time they make progressively better approximations of the simple Lie algebra sl2.
The resulting invariants are the strongest genuinely-computable knot invariants presently
available and they seem to contain information about some classical topologically-defined
knot invariants.
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1. Introduction

(The impatient reader may skip straight to Section 1.2, “Statement of the Main Theorem”)

1.1. From Algebras to Invariants. There is a standard “quantum algebra” methodology
that associates a framed knot invariant to certain triples pU,R,Cq, where U is a unital algebra
and R P U b U and C P U are invertible (see e.g. [Oh, Section 4.2]). For convenience, we
recall this methodology in Aside 1.1.

The best algebras with which to apply this methodology, at least as of 2017, are certain
completions Ûpgq of the universal enveloping algebras Upgq of semi-simple Lie algebras g (or
their quantizations). But these algebras are infinite dimensional, and the sum in Aside 1.1
is infinite and not immediately computable.

The dogma solution is to pick a finite dimensional representation of g and use it to represent
all the elements appearing in Aside 1.1, effectively replacing the algebra by the algebra of
endomorphisms of some finite dimensional vector space. This turns the sum finite; yet if
the knot K has n crossings, our sum becomes a sum over n indices i1, . . . , in. Thus there

ai

C

akbk

bj aj

bi

zpKq “
ÿ

i,j,k

biajbkCaibjak

Draw K as a long knot in the plane so that at each
crossing the two crossing strands are pointing up, and
so that the two ends of K are pointing up.
Put a copy of R “

ř

aib bi on every positive crossing
of K with the “a” side on the over-strand and the “b”
side on the under-strand, labeling these a’s and b’s
with distinct indices i, j, k, . . . (similarly put copies of
R´1 “

ř

a1i b b1i on the negative crossings; these are
absent in our example). Put a copy of C˘1 on every
cuap where the tangent to the knot is pointing to the
right (meaning, a C on every such cup and a C´1 on
every such cap).
Form an expression zpKq in U by multiplying all the
a, b, C letters as they are seen when traveling along
K and then summing over all the indices, as shown.
If R and C satisfy some conditions dictated by the standard Reidemeister moves
of knot theory, the resulting zpKq is a knot invariant.
Abstractly, zpKq is obtained by tensoring together several copies of R˘1 P Ub2 and
C˘1 P U to get an intermediate result z0 P U

bS, where S is a finite set with two
elements for each crossing of K and one element for each right-pointing cuap. We
then multiply the different tensor factors in z0 in an order dictated by K to get an
output in a single copy of U .

Aside 1.1. The standard methodology on an example knot.
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are exponentially-many summands to consider and it takes an exponential amount of time
to compute zpKq, limiting its computation only to relatively small knots.1,2 In addition, by
choosing a specific representation of g, one looses the good behaviour of z under strand-
doubling. In Section 9 we explain why such good behaviour is a desirable property.

Alternatively, one may extract finite-type [BN1, CDM] information out of z by reducing
modulo appropriate filtrations of U and its tensor powers. Invariants of type d are com-
putable in time less than or equal to Opndq [BN2], and thus for small d, they are effectively
computable. But there are only a few invariants of sufficiently small type d, they are not
very powerful, and there are some no-go theorems that limit the power of any finite number
of finite-type invariants to resolve certain topological questions [Ng, St].

Our approach to the computation of zpKq is different. Instead of working directly in
UbS (see Aside 1.1), we work in relatively small3 spaces FpSq of “closed-form formulas for
elements of UbS”. For this to work, we need to ensure that the fundamentals R and C would
be described by “closed-form formula”, and that the most basic operations necessary for the
computation of z, namely multiplication of factors in UbS, can be implemented “in closed
form”.

In practice, the kind of terms that appear within formulas for R and C are exponentials
of the form eξx, where x is a generator of U and ξ is a formal scalar variable, their iterated
derivatives pBξq

keξx “ xkeξx, and exponentials of quadratics like eλxy or eλxby, with scalar λ
and x, y P U . We then need to multiply several such exponentials and differentiated expo-
nentials, and we need to learn how to bring such products into some pre-chosen “canonical
order”. In the standard U „ Ûpgq case, where g is semi-simple, this is complicated. Yet
if g is solvable, this is often easy (see Aside 1.2). Wouldn’t it be nice if it was possible to
approximate semi-simple Lie algebras with solvable ones?

In this paper we exploit the little-known fact that this is (nearly) possible. Precisely, given
a semisimple g, there exists a Lie algebra gε defined over the ring Qrεs of polynomials in a
formal variable ε (in other words, gε is a “one-parameter family of Lie algebras”), so that

(1) If ε is fixed to be some constant not equal to zero, then gε is isomorphic to g` :“ g‘h,
which is the original g with an additional copy of its own (Abelian) Cartan subalgebra
h added.

(2) At ε “ 0, g0 is solvable. Furthermore, gε is solvable in a formal neighborhood of ε “ 0:
for any natural number k ě 0 the reduction gďk of gε to the ring Qrεs{pεk`1 “ 0q is
solvable as a Lie algebra over Q (whose dimension is pk ` 1q dim g).

As k gets larger, the solvable gďk is closer and closer to gε, as the reduction modulo εk`1 “ 0
means less and less, and so at least informally, gďk ÝÝÝÑ

kÑ8
g` „ g. See also Aside 1.3.

It remains to sketch why gε exists. The short, precise, but jargon-heavy answer is in the
next paragraph. A jargon-free example, in the case of g “ gln, is in Aside 1.4.

1“Divide and conquer” methods often improve the computation time to Opec
?
nq for some constant c. Utiliz-

ing this, the simplest of these “quantum invariants”, the Jones, HOMFLY-PT and Kauffman polynomials,
corresponding to sl2, slN and soN in their defining representations, can be computed for surprisingly large
knots even though ultimately ec

?
n grows more rapidly than any polynomial.

2Note that almost any time the phrases “braided monoidal category” or “TQFT” are used within low
dimensional topology, some tensor powers of some vector spaces need to be considered at some point, and
dimensions grow exponentially. Thus our criticism applies in these cases too [BN5].
3Ranks grow polynomially in |S|.
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Let g be a semisimple Lie algebra and let b` and b´ be its upper and lower Borel subal-
gebras, respectively, Then pb`q˚ is b´, and as the latter has a Lie bracket, it follows that b`

has a co-bracket δ. In fact, b` along with its bracket r¨, ¨s and co-bracket δ is a “Lie bial-
gebra”, and one may recover g` “ g‘ h “ b´ ‘ b` as the “Drinfel’d double” Dpb`, r¨, ¨s, δq
of b` (see e.g. [ES, Chapter 4]). By a quick inspection, the axioms of a Lie bialgebra are
homogeneous in δ: meaning that pb`, r¨, ¨s, εδq is again a Lie bialgebra for any scalar ε, and
one may set gε :“ Dpb`, r¨, ¨s, εδq. The required properties are all easy to check. Perhaps
the most interesting is the solvability of g0: indeed g0 “ Ib` :“ pb`q˚ ¸ b` with pb`q˚

regarded as an Abelian Lie algebra and b` acts on pb`q˚ using the co-adjoint action, and
then the solvability of Ib` easily follows from the solvability of b`. It is worth noting that
the knot-theoretic significance of b˚ ¸ b for a general Lie algebra b was studied extensively
in the context of “w-knots” in [BND1, BND2, BND3, BN4, BN3], and that these studies
along with the observations in this paragraph were in some sense the starting points for our
current study.

We would have loved our own story a lot better if it had ended here. Namely if for any
semi-simple g and any k ě 0 we knew how to construct R and C in “small” spaces FpSq
of formulas for elements of ÛpgďkqbS and if we knew how to efficiently “multiply” in FpSq.
This in fact is almost true: the only thing we miss are explicit formulas for R and C. In
order to obtain such formulas we first have to replace gε by its “quantized” version gεq, which
is obtained from pb`, r¨, ¨s, εδq using Drinfel’d’s “quantum double” construction. Very little
of substance changes in the formulas associated with gεq as opposed to gε; they are only just
a bit uglier.

Indeed, here’s a reoredering exercise that we will care about deeply later in this
paper. The semi-simple Lie algebra sl2 is generated by elements y, a, and x with
relations ra, xs “ 2x, ra, ys “ ´2y, and rx, ys “ a. If ηi, αi, and ξi are scalars we
have can reorder eη1yeα1aeξ1xeη2yeα2aeξ2x to become eη0yeα0aeξ0x where

pη0, α0, ξ0q “

ˆ

e´2α1η2

η2ξ1 ` 1
` η1, α1 ` α2 ` log pη2ξ1 ` 1q ,

ξ1 pe
´2α2 ` η2ξ2q ` ξ2

η2ξ1 ` 1

˙

.

In the solvable Lie algebra sl02 obtained from sl2 by adding a central generator c
and replacing the last sl2 relation with rx, ys “ c while keeping ra, xs “ 2x and
ra, ys “ ´2y (thus separating the roles of a as a “number operator” and as a
“Heisenberg-like commutator”), we have eη1yeα1aeξ1xeη2yeα2aeξ2x “ eη0yeα0aeξ0xeγ0c,
where

pη0, α0, ξ0, γ0q “
`

e´2α1η2 ` η1, α1 ` α2, e
´2α2ξ1 ` ξ2, η2ξ1

˘

.

The sl02 formulas are visibly simpler than the sl2 formulas. What is even more
important is that the iterated derivatives of the sl02 formulas stay within a finite
dimensional space of expressions. This is not the case for the sl2 formulas.
Notes. ‚ The formulas within this Aside are proven in Section 12.1. ‚ Over C, sl02 is
isomorphic to the “diamond Lie algebra” of [Ki, Chapter 4.3], which is sometimes
called “the Nappi-Witten algebra” [NW].

Aside 1.2. Reordering differentiated exponentials is easier in the solvable case
then in the semi-simple case.
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In addition, we have so far worked out in detail only the case of “sl2. Almost everything
seems to generalize to arbitrary semi-simple g, and we hope to return to the more general
case in a later publication.

1.2. Statement of the Main Theorem. MORE.

1.3. Section Summaries and Dependencies. MORE.

1.4. Acknowledgement. MORE.

2. Rotational Virtual Tangles

(This section can be read independently of the rest of this paper).
More.

3. The Zeroth Example in Detail

MORE.

4. The Lie Algebra slα,β2 and its Quantization

Semisimple Lie algebras are famously “rigid” and allow no deformations [Ha]
(within the universe of Lie algebras; outside of it, there’s “quantum groups”, of
course). How is this consistent with the existence of the family gε?
The short answer is that gε is a deformation of the solvable g0, not of g. So g is a
deformation of g0, but g0 is not a deformation but a contraction [IW, Gi] of g.

open chamber G: algebras
isomorphic to g`

0

gε

edge: algebras isomorphic to g0

g0

Some cells in BpV q

It is perhaps a bit clearer to think in terms
of the “space of Lie brackets”. Given a vec-
tor space V , a Lie bracket on V is an element
b P V ˚ b V ˚ b V which satisfies a linear equation
(being anti-symmetric) and a quadratic equation
(Jacobi; it is quadratic as a function of b). So
we can consider the variety BpV q of all Lie brack-
ets on V . A very schematic depiction is on the
right. Within BpV q, Lie algebras isomorphic to
some specific semisimple g` make an open cham-
ber G. Indeed that’s the meaning of rigidity — when you move a tiny bit away
from g` what you see is isomorphic to g`. Yet the closure Ḡ of G contains other
Lie algebras, including g0.
Note that every cell in B contains in its closure the 0 bracket, belonging to the
Abelian Lie algebra a on V . If a path gε is chosen as above but with g0 “ a, then in
the same sense as above, gε is nilpotent in a neighborhood of ε “ 0. So in the same
sense as above, every Lie algebra can be approximated by nilpotent Lie algebras.
Why are we not exploiting this fact in this paper? Because the knot invariants
that arise from nilpotent approximation are finite type invariants and with solvable
approximation we do better.

Aside 1.3. How is this possible? The moduli of Lie algebras.
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MORE. (This section can be read independently of the rest of this paper).

5. Computations in (Quantized) Enveloping Algebras: Trading
Non-Commutativity for Non-Linearity

(This section can be read independently of the rest of this paper).
More.

6. Pushforwards of Pure Distributions

(This section can be read independently of the rest of this paper).
Content: Pushforwards in general, interpretation using pairings, the difficulty in the gen-

eral case, central-nilpotent-diagonal and the main theorem.
More.

7. The General slďk2 Invariant

MORE.

8. Bulk Stitching

MORE.

9. Behaviour under strand reversal and strand doubling

The Lie algebra gl`n , namely gln plus an additional n-dimensional Abelian factor
of “diagonal matrices”, is the direct sum (as a vector space) of two subalgebras of
gln: the upper triangular matrices ^ and the lower triangular matrices _. With
some ambiguity regarding diagonal matrices, glεn is obtained from gl`n “ ^ ‘ _

by selectively multiplying some of the structure constants of the latter by ε. In
summary form, this is r^,^s “ ^, r_,_s “ ε_, and r^,_s “ _ ` ε^, which
stands for “brackets within ^ are unchanged, brackets within _ are multiplied by
ε, and in a bracket of something in ^ with something in _, the part of the output
zpKq in _ is unchanged and the part in ^ is multiplied by ε”.

i

j

xij

yji

bi

aj

jiEven more concretely, in terms of generators and relations, we have
that gl`n is generated by txij, yji : 1 ď i ă j ď nuYtai, bi : 1 ď i ď nu,
with relations
rxij, xkls “ δj“kxil ´ δl“ixkj, ryij, ykls “ εδj“kyil ´ εδl“iykj,
rxij, ykls “ δj“kpεδjăkxil ` δi“lpbi ` εaiq{2` δiąlyilq

´δl“ipεδkăjxkj ` δk“jpbj ` εajq{2` δkąjykjq,
rai, xjks “ pδi“j ´ δi“kqxjk, rbi, xjks “ εpδi“j ´ δi“kqxjk,
rai, yjks “ pδi“j ´ δi“kqyjk, rbi, yjks “ εpδi“j ´ δi“kqyjk,
where δcond is 1 if cond is true and is 0 otherwise. As matrices, xij is the upper
triangular matrix with 1 in position ij and 0 elsewhere, yji is the lower triangular
matrix with 1 at ji and 0 elsewhere, and ai and bi are both diagonal with 1 at ii
and 0 elsewhere, except ai is regarded as an upper triangular matrix and bi as a
lower triangular matrix.

Aside 1.4. A solvable approximation of gln.
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MORE.

10. Complexity

MORE.

11. Experimental Results

MORE.

12. Odds and Ends

12.1. Proofs of the Formulas in Aside 1.2. We can carry out the required computations
in a faithful matrix representation of sl2 / sl02; such representations automatically extend

to faithful representations of exponentials and products of exponentials in Ûpsl2q / Ûpsl02q.
And as we have computers, we may as well use them (sources in web/). First, we enter the
sl2 matrices and verify their commutation relations:

y = 
0 0
1 0

; a = 
1 0
0 -1

; x = 
0 1
0 0

;

{a.x - x.a ⩵ 2 x, a.y - y.a ⩵ -2 y, x.y - y.x ⩵ a}

{True, True, True}

We then declare that E[M] means eM , when M is a matrix, and verify the sl2 formulas in
Aside 1.2:

[M_?MatrixQ] := MatrixExp[M];

Simplify[η1 y].[α1 a].[ξ1 x].[η2 y].[α2 a].[ξ2 x] ⩵ [η0 y].[α0 a].[ξ0 x] /.

η0 → η1 +
ⅇ-2 α1 η2

1+η2 ξ1
, α0 → α1 + α2 + Log[1 + η2 ξ1], ξ0 →

ξ2+ξ1 ⅇ
-2 α2+η2 ξ2

1+η2 ξ1


True

(The truth, of course, is that we originally used a computer to Solve for η0, α0, and ξ0, but
once the formulas are found, we only need to check them).

In the case of sl02, the matrix representation is a bit more complicated, the formulas are a
bit simpler, and the end result is the same true:

y =

0 1 0
0 0 0
0 0 0

; a =

0 0 0
0 2 0
0 0 0

; x =

0 0 0
0 0 1
0 0 0

; c =

0 0 -1
0 0 0
0 0 0

;

{a.x - x.a ⩵ 2 x, a.y - y.a ⩵ -2 y, x.y - y.x ⩵ c, x.c ⩵ c.x, y.c ⩵ c.y, a.c ⩵ c.a}

{True, True, True, True, True, True}

Simplify

[η1 y].[α1 a].[ξ1 x].[η2 y].[α2 a].[ξ2 x] ⩵ [η0 y].[α0 a].[ξ0 x].[γ0 c] /.

η0 → η1 + ⅇ-2 α1 η2, α0 → α1 + α2, ξ0 → ⅇ-2 α2 ξ1 + ξ2, γ0 → η2 ξ1

DRAFT! See http://drorbn.net/PPSA/
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True

l

13. Tables

MORE.
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14. Recycling

This section does not exist in a respectable math paper.

14.1. Recycled 170704. There is a standard “quantum algebra” methodology that asso-
ciates a framed knot / tangle invariant to certain triples pU,R,Cq, where U is a unital
algebra and R P UbU and C P U are invertible (see e.g. [Oh, Section 4.2]). In Aside 14.1 we
provisionally explain what we mean by “tangle”, and the “quantum algebra” methodology
is recalled in Aside 1.1.

14.1.1. Formulas and Meta-Algebras. Our approach to the computation of zpKq is different.
Instead of working directly in UbS, our invariant ZpKq takes values in spaces FpSq of
“formulas for elements of UbS” that have an “value map” V : FpSq Ñ UbS, taking a formula
in FpSq to its value in UbS, for which z “ Z�V.4 We make sure that the following five
properties hold:

(1) There are simple and easy to compute (constant time) formulas for the invariants of
a crossing and of a cuap.

(2) There are operations on FpSq that mirror standard operations on the space UbS and
on the space KpSq of S-component tangles, so that a diagram of the following nature
commutes:

4We use properly ordered compositions! f�g means “do f then g”, often obfuscated using “g ˝ f”.

P

not P

not P

Like elsewhere, for us a “tangle” K is a part of a (multi-
component, oriented, framed) knot in a part P of a plane in
which an “up” direction is declared. Unlike elsewhere, we do
not insist that P would be a disk; it may be a union of disks
with a few sub-disks removed. We do insist, however, that the
ends of K would lie within the boundary BP of P and would be
up-going there. We also insist that the components (“strands”)
of K would be intervals (i.e., not circles), and that they would
be placed in a bijection with some finite set S of “strand la-
bels”.
In Section 2 we replace this provisional definition with “rota-
tional virtual tangles” in the spirit of [Ka].

Aside 14.1. Provisionally, what we mean by a “tangle”.

DRAFT! See http://drorbn.net/PPSA/
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Figure 14.1. Stitching. 1
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The most important of these operations is the operation mij
k , defined whenever

i ‰ j P S and k R Szti, ju. On tangles, it is “stitching”: the operation KpSq Ñ
KppSzti, juqYtkuq that takes the head of component i in a tangle K and stitches it to
the tail of component j, renaming the resulting single component k, as in Figure 14.15.
Clearly from the construction in Aside 1.1, the corresponding operation on tUbSu is
“multiply tensor factor i with tensor factor j, storing the result in tensor factor k.
We have a “meta-multiplication” operation mij

k : FpSq Ñ FppSzti, juq Y tkuq which

takes “the formula for an element ζ in UbS” to “the formula for mij
k pζq”, and which

likewise intertwines Z. Namely, we have V�mij
k “ mij�V and mij

k�Z “ Z�mij
k .

(3) Similarly, if S1 X S2 “ H, there is a “disjoint union” operation ˚ : KpS1q ˆKpS2q Ñ

KpS1 Y S2q.
6 The corresponding operation on tUSu is the tensor product operation

˚ “ b : UbS1 ˆ UbS2 Ñ UbpS1YS2q. We ensure that there is a compatible ˚ : FpS1q ˆ

FpS2q Ñ FpS1 Y S2q.
(4) V is injective. A formula is determined its value.
(5) The rank of FpSq (over some ring R of Laurent polynomials which we will specify

later) grows polynomially in the size |S| of S, and all the operations on FpSq are
computable using a polynomial number of ring operations.

These five properties taken together are almost enough for what we want. If K is an n-
crossing tangle, it be presented as some stitching of a disjoint union of n individual crossings
floating indepedently. Hence by using (1)–(3), a formula ZpKq for the invariant zpKq can
be computed using Opnq stitchings and unions. By (4), that formula is in itself an invariant.
Finally, by (5), ZpKq can be computed using a polynomial number of ring operations (and
some combinatorial overhead which amounts to much less).

To show that the computation of Z is poly-time it remains to bound the complexity of the
ring elements that we encounter, and hence the complexity of ring operations among them.
This is done in Section ??.

5The careful reader will notice that stitching is only partially defined, for the head of i must lie next to the
tail of j for mij

k to make sense, and that it is sometimes ill-defined, for there may be more than one path
connecting the head of i with the tail of j. Please accept our assurances that these issues do not lead to any
difficulties, and that they are fully resolved in Section 2.
6As in footnote 5, there is a minor placement issue here. It is resolved in Section 2.

DRAFT! See http://drorbn.net/PPSA/
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