A POLY-TIME KNOT POLYNOMIAL VIA SOLVABLE APPROXIMATION

DROR BAR-NATAN AND ROLAND VAN DER VEEN

Abstract

We construct the first poly-time-computable knot polynomial since Alexander's [Al, 1928] by using some new commutator-calculus techniques and a Lie algebra \mathfrak{g}_{1} which is at the same time solvable and an approximation of the simple Lie algebra $s l_{2}$.

Contents

1. Introduction 1
2. Algebras, Yang-Baxter Elements and Spinners, Invariants 3
3. The Lie Algebra \mathfrak{g}_{0}, the Invariant z_{0}, and the Alexander Polynomial 4
4. The Lie Algebra \mathfrak{g}_{1} and the Invariant z_{1} 4
5. Computing z_{1} 4
6. An Aside on Ribbon Knots 4
7. Questions 4
References 4

1. Introduction

An excellent classical paper in mathematics would state a great theorem in the first couple pages of the introduction, describe its significance in section 2, and then present its proof in the remaining sections. We cannot match that; as a "theorem", our result is that a certain algorithm works well. We cannot even state the theorem without describing the algorithm, and a wordy description of the algorithm would either be lengthy and unmotivated, or would take up a whole paper. So instead of a wordy description we provide a complete implementation, right below in Figure 1.1, along with one usage example. Once it is established that the algorithm fits in less than a page of code, we move on to explain why we think it is valuable, and more importantly, how it arises from a traditional construction applied to a non-traditional Lie algebra which enables a non-traditional computational technique.

Theorem 1.1. The program in Figure 1.1 computes z_{1}, a polynomial invariant of knots, in time polynomial in the crossing number.

Date: First edition Not Yet, 2017, this edition Jun. 24, 2017. Electronic version and related files at [BNVDV], http://drorbn.net/AcademicPensieve/Projects/PPSA/PPSA-170103. 2010 Mathematics Subject Classification. 57M25.
Key words and phrases. knots, tangles, knot polynomials, Lie algebras, Lie bialgebras. This work was partially supported by NSERC grant RGPIN 262178.

A Demo Program for z_{1}

```
\(\mathrm{DP}_{\mathrm{X}_{-} \rightarrow \mathrm{D}_{\alpha}, y \rightarrow \mathrm{D}_{\beta}}\left[P_{-}\right]\left[f_{-}\right]:=\left(*\right.\) means \(\left.\mathrm{P}\left[\partial_{\alpha}, \partial_{\beta}\right][f] *\right)\)
    Total[CoefficientRules [ \(P,\{x, y\}] /\).
        \(\left.\left(\left\{m_{-}, n_{-}\right\} \rightarrow c_{-}\right): \rightarrow c \operatorname{D}[f,\{\alpha, m\},\{\beta, n\}]\right] ;\)
\(\operatorname{CF}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\)Expand /@ Together /@
        \(\mathbb{E}[\omega / . \mathrm{b}: \rightarrow \log [\mathrm{t}], L, Q / . \mathrm{b}: \log [\mathrm{t}]\),
            P/.b: \(\rightarrow \log [\mathrm{t}]\) ];
\(\mathbb{E} /: \mathbb{E}\left[\omega 1_{-}, L 1_{-}, Q 1_{-}, P 1_{-}\right] \mathbb{E}\left[\omega 2_{-}, L 2_{-}, Q 2_{-}, P 2_{-}\right]:=\)
    \(\operatorname{CF@E}\left[\omega 1 \omega 2, L 1+L 2, \omega 2 Q 1+\omega 1 Q 2, \omega 2^{4} P 1+\omega 1^{4} P 2\right]\);
\(N_{u_{i_{-}} c_{j} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\)
    With \(\left[\left\{q=e^{-\gamma} \beta u_{k}+\gamma c_{k}\right\}, C F[\right.\)
        \(\mathbb{E}\left[\omega, \gamma c_{k}+\left(L / . c_{j} \rightarrow \theta\right), \omega e^{-\gamma} \beta u_{k}+\left(Q / . u_{i} \rightarrow \theta\right)\right.\),
            \(\left.\mathrm{e}^{-q} \mathrm{DP}_{\mathrm{c}_{j} \rightarrow \mathrm{D}_{\gamma}, \mathrm{u}_{i} \rightarrow \mathrm{D}_{\beta}}[\mathrm{P}]\left[\mathrm{e}^{q}\right]\right] /\).
        \(\left.\left.\left\{\gamma \rightarrow \partial_{c_{j}} L, \beta \rightarrow \omega^{-1} \partial_{u_{i}} Q\right\}\right]\right] ;\)
\(N_{w_{i_{-}}} c_{j_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\)
    With \(\left[\left\{q=e^{\gamma} \alpha w_{k}+\gamma c_{k}\right\}, C F[\right.\)
        \(\mathbb{E}\left[\omega, \gamma c_{k}+\left(L /, c_{j} \rightarrow 0\right), \omega e^{\gamma} \alpha w_{k}+\left(Q / . w_{i} \rightarrow 0\right)\right.\),
        \(\left.\mathrm{e}^{-q} \mathrm{DP}_{\mathrm{c}_{j} \rightarrow \mathrm{D}_{\gamma}, w_{i} \rightarrow D_{\alpha}}[P]\left[\mathrm{e}^{q}\right]\right] /\).
        \(\left.\left.\left\{\gamma \rightarrow \partial_{c_{j}} L, \alpha \rightarrow \omega^{-1} \partial_{w_{i}} Q\right\}\right]\right]\);
\(N_{w_{i_{-}}} u_{j_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\)
    With \(\left[\left\{q=(1-t) \mu^{-1} \alpha \beta+\mu^{-1} \beta u_{k}+\mu^{-1} \delta u_{k} w_{k}+\mu^{-1} \alpha w_{k}\right\}\right.\),
        CF [
            \(\mathbb{E}\left[\mu \omega, L, \mu \omega q+\mu\left(Q / . w_{i} \mid u_{j} \rightarrow 0\right)\right.\),
            \(\left.\mu^{4} e^{-q} \mathrm{DP}_{\mathrm{w}_{i} \rightarrow \mathrm{D}_{\alpha}, \mathrm{u}_{j} \rightarrow \mathrm{D}_{\beta}}[\mathrm{P}]\left[\mathrm{e}^{q}\right]+\omega^{4} \Lambda[k]\right] /\).
            \(\mu \rightarrow \mathbf{1 +}(\mathrm{t}-1) \delta /\).
            \(\left\{\alpha \rightarrow \omega^{-1}\left(\partial_{w_{i}} Q / . u_{j} \rightarrow 0\right), \beta \rightarrow \omega^{-1}\left(\partial_{u_{j}} Q / . w_{i} \rightarrow 0\right)\right.\),
            \(\delta \rightarrow \omega^{-1} \partial_{w_{i}, u_{j}}\) O \(\left.\}\right]\) ];
\(m_{i_{-}, j_{-} \rightarrow k_{-}}\left[z_{-}\right]:=\operatorname{Module}[\{x, y, z\}\),
    \(z / / N_{w_{i} c_{j \rightarrow x}} / / N_{w_{x} u_{j \rightarrow y}} / /\)
            ReplaceAll[\{ \(\left.\left.c_{x \mid y} \rightarrow c_{x}, w_{j} \rightarrow w_{y}\right\}\right] / / N_{u_{i}} c_{x \rightarrow x} / /\)
            ReplaceAll[ \(\left.\left.z_{-i|j| \times \mid y} \rightarrow z_{k}\right] / / C F\right]\)
```

Figure 1.1. A demo program computing z_{1}, some initial data, and a sample run on the 0 -framed trefoil knot. The program is written in Mathematica [Wo] and is available at [BNVDV].

Initial Data

$\Lambda\left[k_{-}\right]:=(1-t)\left(\alpha^{2} \beta^{2}+4 \alpha \beta \delta \mu+2 \delta^{2} \mu^{2}\right) / 2+$ $2 \mu^{2}(\alpha \beta+\delta \mu) c_{k}-\beta(2 \mu-1)(\alpha \beta+2 \delta \mu) u_{k}+$ $2 \beta \delta \mu^{2} c_{k} u_{k}-\beta^{2} \delta(3 \mu-1) u_{k}^{2} / 2+\alpha(\alpha \beta+2 \delta \mu) w_{k}+$ $2 \alpha \delta \mu^{2} c_{k} w_{k}-2(t-1) \delta^{2}(\alpha \beta+\delta \mu) u_{k} w_{k}+$ $2 \delta^{2} \mu^{2} c_{k} u_{k} w_{k}-\beta \delta^{2}(2 \mu-1) u_{k}^{2} w_{k}+\alpha^{2} \delta(1+\mu) w_{k}^{2} / 2+$ $\alpha \delta^{2} u_{k} w_{k}^{2}-(t-1) \delta^{4} u_{k}^{2} w_{k}^{2} / 2 ;$
$\mathrm{R}_{i_{-}, j_{-}}^{+}:=\mathbb{E}\left[1, \mathrm{~b}_{i} \mathrm{c}_{j}, \mathrm{u}_{i} \mathrm{w}_{j}\right.$,
$-c_{i}(t-1)^{2} / 2-c_{i}^{2}(t-1)^{2} / 2+c_{i} c_{j}\left(t^{2}-t-2\right) / 2-$ $c_{j} u_{i} w_{i} / 2+c_{i}(1-t) u_{i} w_{i}-u_{i}^{2} w_{i}^{2} / 2+u_{i} w_{j}+$ $c_{j} t u_{i} w_{j} / 2+c_{i}(t-2) t u_{i} w_{j}+c_{i}(1+t) u_{j} w_{j} / 2+$ $\left.(t-1) u_{i}^{2} w_{i} w_{j}-(t-2) t u_{i}^{2} w_{j}^{2} / 2\right] ;$
$\mathrm{R}_{i_{-}, j_{-}}^{-}:=\mathbb{E}\left[1,-b_{i} c_{j},-t^{-1} u_{i} w_{j}\right.$,
$c_{i}(t-1)^{2} / 2+c_{i}^{2}(t-1)^{2} / 2+c_{i} c_{j}\left(2+t-t^{2}\right) / 2+$ $c_{j} u_{i} w_{i} / 2+c_{i}(t-1) u_{i} w_{i}+u_{i}^{2} w_{i}^{2} / 2+$
$\left(1-t^{-1}\right) u_{i} w_{j} / 2+c_{i}\left(2 t-5+3 t^{-1}\right) u_{i} w_{j} / 2+$ $c_{j}\left(\mathrm{t}^{-1}+1-\mathrm{t}\right) \mathrm{u}_{i} \mathrm{w}_{j} / 2-\mathrm{c}_{i}(\mathrm{t}+1) \mathrm{u}_{j} \mathrm{w}_{j} / 2+$ $\left(2-3 t^{-1}\right) u_{i}^{2} w_{i} w_{j} / 2+\left(1+2 t^{-2}-3 t^{-1}\right) u_{i}^{2} w_{j}^{2} / 2-$ $\left.\mathrm{t}^{-1}(1+\mathrm{t}) \mathrm{u}_{i} \mathrm{u}_{j} \mathrm{w}_{j}^{2} / 2\right] ;$
$\mathrm{ur}_{i_{-}}:=\mathbb{E}\left[\mathrm{t}^{-1 / 4}, 0, \theta, \mathrm{c}_{i} \mathrm{t} / 4+\mathrm{u}_{i} \mathrm{w}_{i} / 8\right] ;$
$\mathrm{nr}_{i_{-}}:=\mathbb{E}\left[\mathrm{t}^{1 / 4}, \theta, \theta,-\mathrm{c}_{i} \mathrm{t}^{3} / 4-\mathrm{t}^{2} \mathrm{u}_{i} \mathrm{w}_{i} / 8\right] ;$
$u l_{i_{-}}:=\mathbb{E}\left[t^{1 / 4}, \theta, \theta, c_{i} t(4+t) / 4-t^{2} u_{i} w_{i} / 8\right] ;$
$n l_{i_{-}}:=\mathbb{E}\left[\mathrm{t}^{-1 / 4}, 0,0,-\mathrm{c}_{i}\left(1+4 \mathrm{t}^{-1}\right) / 4+\mathrm{u}_{i} \mathrm{w}_{i} / 8\right] ;$

The Trefoil

$z=R_{1,14}^{+} R_{5,2}^{-} n r_{3} u l_{4} R_{19,6}^{+} R_{\overline{7}, 10} n l_{8} u r_{9} R_{11,20}^{+} n r_{12} u l_{13}$ $\mathrm{R}_{15,18}^{-} \mathrm{nl}_{16} \mathrm{ur}_{17}$; ($\left.\operatorname{Do}\left[z=z / / m_{1, k \rightarrow 1},\{k, 2,20\}\right] ; z=z / . a_{-1}: \rightarrow a\right)$
$\mathbb{E}\left[-1+\frac{1}{t}+t, 0,0\right.$,
$-16+\frac{9 c}{2}-\frac{2 c}{t^{4}}+\frac{1}{t^{3}}+\frac{11 c}{2 t^{3}}-\frac{4}{t^{2}}-\frac{8 c}{t^{2}}+\frac{10}{t}+\frac{4 c}{t}+18 t-$
$10 c t-14 t^{2}+8 c t^{2}+7 t^{3}-\frac{3 c t^{3}}{2}-2 t^{4}-2 c t^{4}+$
$2 c t^{5}-\frac{c t^{6}}{2}-4 u w+\frac{2 u w}{t^{4}}-\frac{7 u w}{2 t^{3}}+\frac{9 u w}{2 t^{2}}+\frac{u w}{2 t}+$
$\left.6 t u w-2 t^{2} u w-\frac{1}{2} t^{3} u w+\frac{3}{2} t^{4} u w-\frac{1}{2} t^{5} u w\right]$

The invariant z_{1} is in fact quite strong - explicit computations show that it separates more knots in the standard knot tables than the Alexander polynomial, the Jones polynomial, the HOMFLY-PT polynomial, and Khovanov homology (even when these are combined)! See the table in Section 5.

This is exciting news. The main reason is self-evident $-z_{1}$ is the first poly-time computable polynomial invariants of knots since the Alexander polynomial, discovered nearly 90 years ago [Al, 1928]. A further reason is explained in Section 6 - it seems that z_{1} has a
better chance than anything else we know to detect potential counterexamples to the ribbonslice conjecture. Finally, z_{1} is founded on some new Lie-theoretic techniques, it seems to be possible to generalize it in several directions, and many questions are raised. See Section 7.

Our z_{1} can be considered as a perturbation of another invariant, z_{0}, which is somewhat weaker yet in many ways it is more valuable. It is computed by a shorter program (see Figure 3.1) which runs faster, and it has a proven topological significance. The main reason z_{0} is not the main character of this paper is that it is already well known: restricted to knots z_{0} is the Alexander polynomial and considered on pure tangles (see Section 3) it is equivalent to the " β-calculus" of [BNS, BN2], which in itself is mostly equivalent [Ha] to Archibald's calculus [Ar] and is a mild extension of the Burau-Gassner theory of [LD, KLW, CT, CC].

As we shall see in Section 4, z_{1} arises from a certain Lie algebra \mathfrak{g}_{1}, and as we shall see in Section $3, z_{0}$ arises from a certain Lie algebra \mathfrak{g}_{0}. Within this introduction we only wish to define these two Lie algebras and explain how they arise as "(solvable) approximations of $s l_{2}$ ".

Definition 1.2. Over the field \mathbb{Q} of rational numbers, let \mathfrak{g}_{0} be the 4-dimensional Lie algebra generated by elements b, c, u, and w, such that b is central, $[c, u]=u,[c, w]=-w$, and $[u, w]=b:$

$$
\mathfrak{g}_{0}:=\mathbb{Q}\langle b, c, u, w\rangle /([b,-]=0,[c, u]=u,[c, w]=-w,[u, w]=b) .
$$

We grade \mathfrak{g}_{0} by declaring that $\operatorname{deg}(b, c, u, w)=(1,0,1,0)$.
Note that \mathfrak{g}_{0} is solvable: Indeed

$$
\mathfrak{g}_{0} \supset\langle b, u, w\rangle \supset\langle b\rangle \supset\{0\}
$$

is a tower of ideals of \mathfrak{g}_{0} whose consequetive quotients are Abelian.
Definition 1.3. Over the ring $R:=\mathbb{Q}[\epsilon] /\left(\epsilon^{2}=0\right)$, let \mathfrak{g}_{1} be the 4-dimensional Lie algebra generated by elements b, c, u, and w, such that b is central, $[c, u]=u,[c, w]=-w$, and $[u, w]=b-2 \epsilon c:$

$$
\mathfrak{g}_{1}:=R\langle b, c, u, w\rangle /([b,-]=0,[c, u]=u,[c, w]=-w,[u, w]=b-2 \epsilon c) .
$$

We grade R and \mathfrak{g}_{1} by declaring that $\operatorname{deg}(b, c, u, w, \epsilon)=(1,0,1,0,1)$.
Note that over $\mathbb{Q}, \mathfrak{g}_{1}$ is an 8-dimensional solvable Lie algebra: Indeed

$$
\mathfrak{g}_{1} \supset\langle b, u, w, \epsilon b, \epsilon c, \epsilon u, \epsilon w\rangle \supset\langle b, \epsilon b, \epsilon c, \epsilon u, \epsilon w\rangle \supset 0
$$

is a tower of ideals of $\mathfrak{g}_{1} / \mathbb{Q}$ whose consequetive quotients are Abelian.
For the purposes of this paper, we do not need to know that \mathfrak{g}_{0} and \mathfrak{g}_{1} are related to the classical Lie algebra $s l_{2}$, and hence the next few paragraphs ${ }^{1}$ can safely be skipped. Yet these paragraphs say that "there's more where \mathfrak{g}_{0} and \mathfrak{g}_{1} came from", and strongly suggest that there's more where our z_{0} and z_{1} come from.

Let \mathfrak{g} be an arbitrary semi-simple Lie algebra over \mathbb{Q}, and let $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$be MORE.
2. Algebras, Yang-Baxter Elements and Spinners, Invariants

MORE.

[^0]```
A Demo Program for \(z_{0}\)
\(\operatorname{CF}\left[\omega_{-} \cdot \mathbb{E}\left[Q_{-}\right]\right]:=\)Simplify \([\omega] \mathbb{E}[\) Simplify \([Q]] ;\)
\(\mathbb{E} /: \mathbb{E}[Q 1-] \mathbb{E}[Q 2\) _] := CF@ \([Q 1+Q 2] ;\)
\(\mathbf{N}_{u_{i_{-}}} c_{j_{-} \rightarrow k_{-}}\left[\omega_{-}, \mathbb{E}\left[Q_{-}\right]\right]:=\)
\(\operatorname{CF}\left[\omega \mathbb{E}\left[e^{-\gamma} \beta u_{k}+\gamma c_{k}+\left(Q / . c_{j} \mid u_{i} \rightarrow 0\right)\right] /\right.\).
\(\left.\left\{\gamma \rightarrow \partial_{c_{j}} Q, \beta \rightarrow \partial_{u_{i}} Q\right\}\right] ;\)
\(N_{w_{i_{-}}} c_{j_{-} \rightarrow k_{-}}\left[\omega_{-} . \mathbb{E}\left[Q_{-}\right]\right]:=\)
\(\operatorname{CF}\left[\omega \mathbb{E}\left[e^{\gamma} \alpha w_{k}+\gamma \mathbf{c}_{k}+\left(Q / \cdot c_{j} \mid w_{i} \rightarrow 0\right)\right] /\right.\).
\(\left.\left\{\gamma \rightarrow \partial_{c_{j}} Q, \alpha \rightarrow \partial_{w_{i}} Q\right\}\right]\);
\(N_{w_{i_{-}}} u_{j_{-} \rightarrow k_{-}}\left[\omega_{-} \cdot \mathbb{E}\left[Q_{-}\right]\right]:=\)
CF [
\(v \omega \mathbb{E}\left[-\mathbf{b} v \alpha \beta+v \beta u_{k}+v \delta u_{k} w_{k}+v \alpha w_{k}+\right.\) \(\left.\left(Q / . w_{i} \mid u_{j} \rightarrow \theta\right)\right] / . v \rightarrow(1+b \delta)^{-1} /\).
\(\left.\left\{\alpha \rightarrow \partial_{w_{i}} Q / . u_{j} \rightarrow 0, \beta \rightarrow \partial_{u_{j}} Q / . w_{i} \rightarrow 0, \delta \rightarrow \partial_{w_{i}, u_{j}} Q\right\}\right] ;\) \(m_{i_{-}, j_{-} \rightarrow k_{-}}\left[\omega_{-}, \mathbb{E}\left[Q_{-}\right]\right]:=\)
CF[Module \([\{x\}\),
\(\left(\omega \mathbb{E}[Q] / / N_{w_{i} c_{j \rightarrow x}} / / N_{u_{i}} c_{x \rightarrow x} / / N_{w_{x}} u_{j \rightarrow x}\right) /\).
\(\left.\left.\left\{c_{i} \rightarrow c_{k}, w_{j} \rightarrow w_{k}, y_{-x}: \rightarrow y_{k}\right\}\right]\right]\)
```


## Initial Data

$\mathbf{R}_{i_{-}, j_{-}}^{+}:=\mathbb{E}\left[\mathrm{b}_{j}+\mathrm{b}^{-1}\left(\mathrm{e}^{\mathrm{b}}-1\right) \mathrm{u}_{i} \mathbf{w}_{j}\right] ;$
$\mathbf{R}_{i_{-}, j_{-}}^{-}:=\mathbb{E}\left[-\mathrm{b} \mathbf{c}_{j}+\mathrm{b}^{-1}\left(\mathrm{e}^{-\mathrm{b}}-1\right) \mathrm{u}_{i} \mathbf{W}_{j}\right]$;
The Knot $8_{17}$
$\mathbf{z}=\mathbf{R}_{12,1}^{-} \mathbf{R}_{\mathbf{2}, 7}^{-} \mathbf{R}_{\mathbf{8 , 3}}^{-} \mathbf{R}_{4,11}^{-} \mathbf{R}_{16,5}^{+} \mathbf{R}_{6,13}^{+} \mathbf{R}_{14,9}^{+} \mathbf{R}_{10,15}^{+}$;
Do [z = $\left.z / / m_{1, n \rightarrow 1},\{n, 2,16\}\right] ;$
$\mathrm{CF} @ \mathrm{z} / \cdot \omega_{-} \cdot \mathbb{E}\left[Q_{-}\right]: \rightarrow \omega^{-1} / \cdot \mathrm{b} \rightarrow \log [\mathrm{t}]$
$-\frac{1-4 t+8 t^{2}-11 t^{3}+8 t^{4}-4 t^{5}+t^{6}}{t^{3}}$
Figure 3.1. A demo program computing $z_{0}$, some initial data, and a sample run on the knot $8_{17}$. The program is written in Mathematica [Wo] and is available at [BNVDV].
3. The Lie Algebra $\mathfrak{g}_{0}$, the Invariant $z_{0}$, and the Alexander Polynomial

## 4. The Lie Algebra $\mathfrak{g}_{1}$ And the Invariant $z_{1}$

MORE.

## 5. Computing $z_{1}$

MORE.

## 6. An Aside on Ribbon Knots

MORE.

## 7. Questions

MORE.

## References

[Al] J. W. Alexander, Topological invariants of knots and link, Trans. Amer. Math. Soc. 30 (1928) 275-306. Page(s) 1, 2.
[Ar] J. Archibald, The Multivariable Alexander Polynomial on Tangles, Ph.D. thesis, University of Toronto, 2010. See http://www.math.toronto.edu/~jfa/. Page(s) 3.
[BN1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423-472. Page(s) .
[BN2] D. Bar-Natan, Balloons and Hoops and their Universal Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, Acta Mathematica Vietnamica 40-2 (2015) 271-329, arXiv:1308.1721. Page(s) 3.
[BNS] D. Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products, and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10 (2013), arXiv:1302.5689. Page(s) 3.
[BNVDV] D. Bar-Natan and Roland van der Veen, A Poly-Time Knot Polynomial Via Solvable Approximation, (self-reference), paper and related files at http://drorbn.net/AcademicPensieve/Projects/ PPSA. The arXiv:????.????? edition may be older. Page(s) 1, 2, 4.
[CC] D. Cimasoni and A. Conway, A Burau-Alexander 2-functor on Tangles, arXiv:1606.05166. Page(s) 3.
[CT] D. Cimasoni and V. Turaev, A Lagrangian Representation of Tangles, Topology 44 (2005) 747-767, arXiv:math.GT/0406269. Page(s) 3.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2 (1996) 1-41, arXiv:q-alg/9506005. Page(s) .
[Ha] I. Halacheva, Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group, Ph.D. thesis, University of Toronto, 2016. Page(s) 3.
[Ka] L. H. Kauffman, Rotational Virtual Knots and Quantum Link Invariants, arXiv:1509.00578. Page(s)
[KLW] P. Kirk, C. Livingston, and Z. Wang, The Gassner Representation for String Links, Comm. Cont. Math. 3 (2001) 87-136, arXiv:math/9806035. Page(s) 3.
[LD] J. Y. Le Dimet, Enlacements d'Intervalles et Représentation de Gassner, Comment. Math. Helv. 67 (1992) 306-315. Page(s) 3.
[Wo] Wolfram Language $\varepsilon \mathcal{3}$ System Documentation Center, http://reference.wolfram.com/language. Page(s) 2, 4.

Department of Mathematics, University of Toronto, Toronto Ontario M5S 2E4, Canada
E-mail address: drorbn@math.toronto.edu
URL: http://www.math.toronto.edu/~drorbn
Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

E-mail address: roland.mathematics@gmail.com
URL: http://www.rolandvdv.nl/


[^0]:    ${ }^{1}$ Trigger warning: Borel and Cartan subalgebras, Lie bialgebras, Drinfel'd doubles.

