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Abstract

We present the strongest known knot invariant that can be computed effectively (in polynomial time)1.

1 Introduction

We present a simple, strong knot invariant that is closely related to the Alexander polynomial and seems to
share many of its good properties. For example, unlike the commonly used quantum invariants such as the
Jones polynomial, our invariant is computable in polynomial time. For simple knots the Jones polynomial
works well but as the number of crossings grows the exponentially many terms in the resulting state sums
quickly become unmanageable. Our invariant does not suffer from these issues, it scales well with the
complexity of the knot.

The plan of the paper is as follows. Our invariant is based on normal ordering exponentials in the q-Weyl
algebra 〈E,F 〉/(EF − qFE = 1), see Section 5. As a warm-up we first show how the Alexander polynomial
may be derived from the ordinary Weyl algebra 〈E,F 〉/(EF −FE = 1) in Section 4. These algebras are but
examples of a more general theory of invariants coming from algebras satisfying certain equations that we
introduce in Section 2. As a preview we start by giving a condensed definition of the knot invariant. Proofs
and additional (conjectured) properties are discussed in Section 6.

1.1 The knot invariant

Consider a (long) knot K presented as a proper smooth embedding of [0, 1] into the closed unit ball such
that the projection on the third coordinate is a generic immersion γ in the plane, see for example Figure
1. More specifically, assume that there is an n ∈ N such that γ has the following properties. The points
γ( k

n+1
) where k ∈ {1, . . . , n} are the union of all double points and all points where γ′ is in the direction of

the positive x-axis. The double points are known as crossings and the latter as cuaps. Close to any crossing
we assume γ′ has positive y-coordinate. The sign of a crossing is the sign of the x-coordinate of γ′ at the
overpass. A crossing is denoted Xσ

i,j where σ is the sign and i, j are the labels of the over and under strand.
The sign of a cuap is the sign of the y-direction of γ′′. A cuap is denoted uσi where σ is the sign and i is its
label.

Figure 1: A diagram for the trefoil knot 31. The double points at the crossings and the right-pointing cuaps are
enumerated in order of appearance. The matrices W,Q and the number c necessary for computation of the invariant
Z0 are listed next to it.

To define our knot invariant Z0 we need to introduce some preliminary constructions. Let Eij be the
elementary n× n matrix with a single non-zero entry 1 at the (i, j)-th place. Define the matrices

Q =
∑
Xσi,j

σt
σ
2 (Ejj − E

i
j) W =

∑
i<j

Eij c =
∏

Xσi,j ,u
σ
i

t−σ

Here the sum and product are over all crossings/cuaps in the diagram. Next recall the adjugate of a matrix
M is defined by Madj(M) = det(M)I and define

B = I − (t
1
2 − t−

1
2 )WQ G = Qadj(B) H = adj(B)W

1This work was partially supported by NSERC grant RGPIN 262178 and the Netherlands Organisation for Scientific Research.
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ZG = (t− t−1)

n∑
j=2

∑
a,b<j

Gja

(
1

2
Gjb +

∑
g>j

Ggb

)

ZH =
∑
Xσi,j

σ

2
((1− tσ)Hj

i )2 − σ

2
((1 + tσ)Hj

j )2 + σtσ(Hj
iH

i
j +Hi

iH
j
j ) + tσ(1− t)Hj

i ((1 + σ)Hj
j + (1− σ)Hi

i )

+ det(B)
∑
uσi

σHi
i

Theorem 1. c
1
2 det(B) is the Alexander polynomial ∆ and Z0 = c(ZG +ZH) is a knot invariant. Both are

elements of Z[t, t−1] computable in polynomial time.

The above formulas immediately show that the computation must be polynomial time, for a more detailed
discussion see Theorem 5 in Section 6.

The pair ∆, Z0 distinguishes all knots in the Rolfsen table of prime knots up to ten crossings, see the
Appendix. That is a better performance than for example Khovanov homology and HOMFLY polyno-
mial combined2. More importantly Z0 appears to share many of the desirable properties of the Alexander
polynomial.

Our invariant Z0 appears to coincide with a part of the colored Jones invariant studied by Overbay [12]
and Rozansky [14], see Conjecture 3 of Section 6. The present approach seems simpler as it allows a local
version and a polynomial time algorithm. We also conjecture new bounds on the knot genus and argue Z0

detects mirror images.

1.2 Example: Trefoil

We illustrate the computation of Z0 for the trefoil knot 31 shown in Figure 1.

B =



1 0 0 0 1− t 0 0
0 t 0 0 1− t 0 0
0 t− 1 1 0 1− t 0 1− t
0 t− 1 0 1 1− t 0 1− t
0 t− 1 0 0 1 0 1− t
0 0 0 0 0 1 1− t
0 0 0 0 0 0 1


∆31(t) = c

1
2 det(A) = t− 1 + t−1

G =



0 t
3
2 − t

1
2 0 0 −t

3
2 0 t

3
2 − t

5
2

0 t
1
2 0 0 t

3
2 − t

1
2 0 t

5
2 − 2t

3
2 + t

1
2

0 0 0 0 0 0 −t
5
2 + t

3
2 − t

1
2

0 0 0 0 0 0 0

0 t
1
2 − t

3
2 0 0 t

3
2 0 t

5
2 − t

3
2

0 −t
1
2 0 0 t

1
2 − t

3
2 0 −t

5
2 + 2t

3
2 − t

1
2

0 0 0 0 0 0 t
5
2 − t

3
2 + t

1
2


ZG = t4 − 3t2

2
+

1

2

H =



0 t2 − t+ 1 t t t t2 t2

0 0 1 1 1 t t
0 0 t− t2 1 1 t t
0 0 t− t2 t− t2 1 t t
0 0 1− t 1− t 1− t 1 1
0 0 0 0 0 0 t2 − t+ 1
0 0 0 0 0 0 0


ZH = t4 − 3t3 +

7t2

2
− t− 1

2

It follows that Z0(31) = c(ZG + ZH) = 2− t−1 − 3t+ 2t2 and its normalization is ρ1(t) = −t− t−1, see
section 6. Comparing to the table in the Appendix, notice we used the mirror image of the usual trefoil 31

from the table. Conjecture 1 explains the ensuing sign in ρ1.

2 Snarl diagrams: A local version of the knot invariant

So far we defined Z0 for knot diagrams but did not yet show its value is independent of the chosen diagram.
As any two diagrams for the same knot are related by Reidemeister moves, all we need to do is show Z0

is unchanged under those moves. Instead of attempting a direct proof we first extend Z0 to a function Z
on more general diagrams that we call snarl diagrams. Showing invariance of Z is vastly simpler since now
all computations become local. Our treatment is closely related to Kauffman’s rotational virtual tangles [7]
but avoids virtual crossings.

2The knots 816 and 10156 have identical Khovanov homology and identical HOMFLY polynomials [1].
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Definition 1. A snarl3 diagram is a finite set L together with a finite oriented graph G = (V,E) and
functions σ : V → {±1} and ρ : E → Z. The edges E are assumed to be a disjoint union of oriented paths
and each path is labelled by an element of L. Furthermore the edges around any vertex are ordered cyclically
such that two adjacent edges enter and two exit each vertex that is not an endpoint of a path.

The vertices of the graph should be viewed as the crossings and endpoints of a projection of a piece of a
knot. The paths labeled by L correspond to the connected components. The map ρ keeps track of rotation
numbers of the tangent vector on the edges so that our diagrams are like Morse diagrams. To build a snarl
diagram from any knot diagram just make the tangent vector near each crossing point upwards and count
the resulting rotation numbers of the tangent vector at each edge. For example the edge labeled 4 in Figure
1 has ρ = −1 as it rotates clockwise. ρ = 0 for all other edges. A more interesting example of a snarl
diagram is shown in Figure 2.

Figure 2: Left: A snarl diagram corresponding to the left-hand side of equation (2), the numbers give the value of ρ,
the letters a, b are the labels of the two components. Right: A piece of a knot whose snarl diagram would be on the
left hand side. Again a, b depict the labels of the two components and the integers are labels of the smaller pieces
used to build up this diagram as in equation (2).

Knot diagrams may be assembled from simpler pieces by the following two operations on snarl diagrams.

Definition 2. Disjoint union: For two snarl-diagrams G,G′ with label sets L,L′ the disjoint union GtG′
is the snarl diagram with underlying graph as indicated and label set L t L′. To avoid clutter we sometimes
omit the t symbol and use juxtaposition instead.
Stitching: For i 6= j ∈ L and k /∈ L− {i, j} define the snarl diagram mij

k (G) to be the graph obtained from
G by connecting the endpoint of component i to the start of component j, erasing the vertex in the middle.
For the newly created edge e we define ρ(e) to be the sum of the values of ρ on the edges that disappear. The
newly created component is labeled k so the label set is L− {i, j} ∪ {k}.

Notice how any snarl diagram may be constructed using disjoint union and stitching from two types of
fundamental diagrams: The crossing X±ij where we label the over-strand i and ρ of every edge is 0 and the
diagram αri , a single oriented edge labelled i with rotation number ρ = r. It is sometimes useful to stitch
many ends at the same time. For a sequence I = (I1, . . . , In) of n distinct elements of L and k /∈ L − I
define4

mI
k = mI1,I2

k //mk,I3
k // . . .m

k,In−1

k //mk,In
k

Even more generally if τ = (τ1, . . . τ b) is a sequence of b such sequences whose disjoint union is L and

B = (B1, . . . , Bb) is any b-element sequence then define mτ
B = mτ1

B1
// . . . //mτb

Bb
. When B is not specified we

take it to be (1, . . . , b), the commas are sometimes dropped for brevity.
Snarl diagrams are meant to generalize Morse diagrams of pieces of knots. As such we should consider

them up to equivalence under a version of the Reidemeister moves as for example described in Chapter 3
of [11]. Using rotation numbers instead of cuaps and using [13] we only have to look at the four equations
below, depicted in Figure 3.

Definition 3. Consider the equivalence relation ∼ on the set of snarl diagrams generated by relabeling
components and the equivalences

X±13 t α
∓1
2 //m(123) ∼ α0

1 ∼ X±31 t α
±1
2 //m(123) (1)

X−12 tX
+
34 t α5 t α−1

6 //m(13)(4526) ∼ α0
1 t α0

2 ∼ X+
12 tX

−
34 t α5 t α−1

6 //m(5163)(42) (2)

X±12 tX
±
34 tX

±
56//m

(13)(25)(46) ∼ X±12 tX
±
34 tX

±
56//m

(35)(16)(24) (3)

X±12 ∼ α
±1
1 t α

±1
2 tX

±
34 t α

∓1
5 t α

∓1
6 //m(135)(246) (4)

Our motivation for defining this equivalence relation is the following Reidemeister type theorem.

Theorem 2. Every isotopy class of long knots can be represented by a snarl diagram. Two snarl diagrams
representing isotopic knots are equivalent.

3Dictionary entry: a knot or tangle, also a growl.
4In what follows f//g means the composition g ◦ f .
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Figure 3: Equivalences on snarl diagrams. The labels of the components and degree 1 vertices are not shown. Only
the edges with a non-zero value of ρ are marked.

Proof. This can be proved exactly as in the case of the standard Reidemeister theorem for Morse diagrams
of tangles. See for example Chapter 3 of [11] or [15]. The fact that our set of moves is sufficient follows from
Thm 1.2 of [13].

Snarl diagrams may also be used to represent more general knotted objects such as planar tangles and
for those a similar theorem will hold.

3 Snarl algebra

In this section we formulate conditions on an algebra to yield a knot invariant. Such invariants are sometimes
known as universal invariants, see [6] and the references therein.

By an algebra A we mean a ring with 1 whose center includes a commutative base ring R with 1. All
tensor products are over R. Similar to the labeling of components of snarl diagrams we would like to explicitly
label the tensor factors in our tensor products. Given a finite set S we define A⊗S to be the tensor product
of |S| copies of A indexed by the elements of S. When T ⊂ S define ιT : A⊗T → A⊗S by the identity on
the tensor factors indexed by elements of T and setting all other tensor factors to 1. We use the shorthand
ι{i,j}(Y ) = Yij and ι{i}(y) = yi. Denote by mij

k the multiplication operation A⊗St{i,j} → A⊗St{k} defined
by deleting the i-th and j-th tensor factors and placing the product of those elements into the k-th tensor
factor.

Definition 4. A snarl-algebra is an algebra A together with invertible elements X ∈ A⊗{1,2}, α ∈ A such
that the equations shown below are satisfied. For any snarl diagram D with label set L denote by Z(D) ∈ A⊗L
the unique element characterized by Z(X±ij ) = X±ij and Z(αri ) = αri and Z(D t D′) = Z(D) ⊗ Z(D′) and

Z(mij
k D) = mij

k Z(D). Z = ZA,X,α is called the snarl invariant corresponding to A.

Z(X±13α
∓1
2 //m(123)) = Z(α0

1) = Z(X±31α
±1
2 //m(123)) (5)

Z(X−12X
+
34α5α

−1
6 //m(13)(4526)) = Z(α0

1α
0
2) = Z(X+

12X
−
34α5α

−1
6 //m(5163)(42)) (6)

Z(X±12X
±
34X

±
56//m

(13)(25)(46)) = Z(X±12X
±
34X

±
56//m

(35)(16)(24)) (7)

Z(X±12) = Z(α±1
1 α±1

2 X±34α
∓1
5 α∓1

6 //m(135)(246)) (8)

This definition is designed to make following theorem hold.

Theorem 3. For any snarl algebra the corresponding invariant Z is well-defined and its value is independent
of the snarl diagram chosen to compute it.

Proof. For the well-definedness of Z we argue that its value does not depend on the order of stitchings and
disjoint unions used to build up the snarl. First one may carry out all disjoint union operations at the
beginning. By associativity of both operations it is then clear that the order is irrelevant.

By construction equivalent snarl diagrams will yield the same value of Z. Theorem 2 finishes the proof.

As a relatively simple example, not used below, consider the group algebra CG of a finite group G and
its dual C(G) = {f : G→ C}. Define a snarl algebra D(G) = C(G)⊗CG with multiplication determined by

(δg ⊗ h)(δg
′
⊗ h′) = δgδhg

′h−1

⊗ hh′

here δg denotes the function that takes value 1 on g and is zero otherwise.
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The reader is invited to check that D(G) becomes a snarl algebra if we set:

ZD(G)(X
σ
ij) =

∑
g∈G

(δg ⊗ g−σ)i(1⊗ gσ)j ZD(G)(αi) = (1⊗ 1)i σ ∈ {−1, 1}

Using the Wirtinger presentation, the corresponding knot invariant ZD(G) may be interpreted as

ZD(G)(K) =
∑
π

δπ(µ) ⊗ π(λ)

Here the sum is over all representations π of the fundamental group of the knot complement into G and µ, λ
are the canonical meridian and 0-framed longitude of the long knot.

For example the value of the trefoil knot is

ZD(G)(X
+
15X

+
62X

+
37α
−1
4 //m(1234567)) =

∑
a,b,c∈G

(δaδbcb
−1

δbab(ba)−1

⊗ a−3bac)1

We leave these statements as an exercise to the reader as they are neither difficult nor new [9] and also
not the subject of the present paper. In the next section we will work out a more relevant and interesting
example in full detail.

Before going into specific examples of snarl algebras it should be mentioned that many such algebras can
be obtained from applying the Drinfeld double construction [5]. This includes the finite group example just
given. The resulting ribbon Hopf algebras always yield snarl algebras but snarl algebras are a little simpler
since we do not require the coalgebra structure. In future work we will comment more on these general
constructions.

4 Alexander polynomial and Weyl algebra

In this section we introduce the Weyl algebra and show how it is a snarl algebra. The corresponding invariant
is the Alexander polynomial and serves as both a special case and a warming up example for the invariant
treated in the next section.

The Weyl algebra W is the algebra generated over the ring R = Q(t
1
2 ) by non-commutative power series

in E,F subject to the relation FE − EF = 1. Using this relation any element of W may be written as a
sum of alphabetically ordered monomials. Infinite series are always understood in the topology suggested
by this alphabetic ordering.

The foundation for our computations is the well-known Weyl commutation relation between exponentials.

Lemma 1. In W we have the following relation:

eyF exE = eyxexEeyF (9)

Proof. This follows directly from the identity F bEa =
∑
j
a!b!Ea−jF b−j

(a−j)!j!(b−j)! that may be proven by induction.

For convenience we formalize our alphabetic approach toW a bit more by introducing V = R[[e, f ]]. The
map O : V → W given by O(eif j) = EiF j is a bijection, this follows from ordering. We may use it to pull
back the product on W as follows. Define m(g, g′) = O−1(O(g)O(g′)), for example m(ef, ef) = e2f2 + ef .
Our convention is that this special product on V will be denoted m, while the ordinary product of power-
series is denoted by juxtaposition. SinceW is associative the same is true for V with the pulled back product
m.

For later use we also define renaming operations, these are algebra maps rij : V⊗St{i} → V⊗St{j} by
rij(ei) = ej and rij(fi) = fj and the identity on the other algebra generators. More generally for any ordered
partition τ of S into b parts and b-element sequence B we set rτB(ei) = eBj if i ∈ τ j and the same for fi.

We sometimes use the short hand rijk = rik//r
j
k and also rτ = rτ(1,2,...,b).

We now aim to develop techniques for showing V is a snarl algebra with if we set:

Z(Xσ
ij) = t−

σ
2 e(1−tσ)(ei−ej)fj Z(ασi ) = t−

σ
2

The main difficulty is to find a good formula for the multiplication m on elements such as the above. Let
S be a finite set of labels. Lemma 1 tells us that in V⊗S we have mij

k ebfi+aej = eba+aek+bfk . Setting
x = (xs)s∈S , y = (ys)s∈S and e = (es)s∈S and f = (fs)s∈S we may write any element of g ∈ V⊗S as
g(e, f) = g(∂x, ∂y)eex+yf |x=y=0. This allows us to compute mij

k (g) =

mij
k (g(∂x, ∂y)eex+yf |x=y=0) = g(∂x, ∂y)mij

k (eex+yf )|x=y=0 = g(∂x, ∂y)eyixj+xe+yf |x=y=0//r
ij
k

More specifically if g = eeQf for some square matrix Q, as is the case for the fundamental snarls then

mij
k (eeQf ) = e∂xQ∂yeyixj+xe+yf |x=y=0//r

ij
k

The lemma below will show us how to simplify this.
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Lemma 2. Given square matrices W,Q such that det(I −WQ) 6= 0 and vectors x, y, e, f we have

e∂xQ∂yeyWx+ex+yf =
e(eQ+y)(I−WQ)−1(f+Wx)+ex

det(I −WQ)
(10)

Proof. We claim that both sides of the equation satisfy the system of differential equations

∂QijΨ = ∂xi∂yjΨ Ψ|Q=0 = eyWx+ex+yf

There is only one power series in the commuting variables Qi,j , xi, yj satisfying these equations. Indeed
we may use the differential equation to express the coefficient of any monomial in terms of coefficients of
monomials whose joint degree in the Q-variables is lower. It thus suffices to prove our claim that both
sides satisfy the differential equations. We focus on the right-hand side as the left hand side is clear. Set
A = I −WQ so the exponent is V = (eQ+ y)A−1(f +Wx) + ex. Then

∂Qij
eV

detA
=

eV

detA

(
∂QijV −

∂Qij (detA)

detA

)
For the first term we use ∂Qij (A

−1)rs = (A−1W )riA
−1
js to find

∂QijV = ei(A
−1(f +Wx))j + ((eQ+ y)A−1W )i(A

−1(f +Wx))j

For the second term we compute ∂Qij (detA) = −(adj(A)W )ji so −
∂Qij (detA)

detA
= (A−1W )ji This matches

the other side of the equation:

∂xi∂yj
eV

detA
=

eV

detA
((eQ+ y)A−1W + e)i(A

−1(f +Wx))j + (A−1W )ji)

Returning to our computation of mij
k (eeQf ), taking W = Eij gives (I −WQ)−1 = I + 1

1−Qji

∑
bQjbEib

and so det(I −WQ) = 1−Qji and Q(I −WQ)−1 = Q+ 1
1−Qji

∑
abQjbQaiEab. This means that

mij
k (eeQf ) =

e
eQf+ 1

1−Qji

∑
ab eaQaiQjbfb

(1−Qji)
//rijk

Sometimes it is convenient to do many multiplications (stitchings) at once. For this we generalize the
above discussion to prove

Lemma 3. For any ordered partition of the labels τ = (τ1, .., τn) and an n-element set of new labels L we
may describe mτ

L as follows. First define W =
∑
{(i,j)|∃s:i,j∈τs,i≺j}E

i
j. Here ≺ refers to the ordering of the

elements in τk.

mτ
L

(
eeQf

∆

)
=

1

∆ det(I −WQ)
eQ(I−WQ)−1

//rτL

For any constant ∆ and matrix Q whose entries are indexed by L.

Proof. Without loss of generality we restrict ourselves to the special case τ = (1, 2, . . . n) = S. For any
g ∈ V⊗S we have mτ (g) =

mτ
1(g(∂x, ∂y)eex+yf |x=y=0) = g(∂x, ∂y)mτ

1(eex+yf )|x=y=0 = g(∂x, ∂y)eyWx+xe+yf |x=y=0//r
τ
1

Here we used the commutation relation that follows from lemma 1

ex1Eey1F ex2Eey2F . . . exnEeynF = eyWxe(x1+···+xn)Ee(y1+···+yn)F

Now if g = eeQf

∆
Lemma 2 finishes the proof.

In case L = {1, ..., k} and τ is a partition of {1, ..., n} we may write out the renaming operation rτ

explicitly. Define M by Mij = 1 if i ∈ τ j and zero otherwise. Then

mτ
L

(
1

∆
eeQf

)
=

1

∆ det(I −WQ)
eeM

TQ(I−WQ)−1Mf
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4.1 The Weyl algebra is a snarl algebra

In this section we prove that W, or rather its normal ordered version V, with the formulas below really
satisfies the axioms of a snarl algebra. We will treat the most important cases and write down the main
steps in the computations. Readers that would like to see more details are invited to run the computer
implementation described in the Appendix.

Z(Xσ
ij) = t−

σ
2 e(1−tσ)(ei−ej)fj Z(ασi ) = t−

σ
2

One of the benefits of extending knot invariants to local objects like snarls is that checking the Reidemeister
moves becomes local too. Each of the axioms is a routine calculation using the formulas we derived above
(Lemma 3 and the remark coming after it). Here and in the sequel we often write the invariant of a snarl T
as Z(T ) = ∆−1

T eeQT f where ∆T , QT are the constant and matrix defined by this equation.
First we check

Z(X±31α
±1
2 //m(123)) = Z(α0

1)

To evaluate the left hand side we first consider the disjoint union D = Xσ
31 tασ2 . Z(D) = ∆−1

D eeQDf , where
∆D = tσ and W and QD are given below:

W =

 0 1 1
0 0 1
0 0 0

 QD =

 tσ − 1 0 0
0 0 0

1− tσ 0 0

 (I −WQ)−1 =

 t−σ 0 0
t−σ − 1 1 0

0 0 1


The last matrix has determinant t−σ and MTQ(I −WQ)−1M = 0, where MT = (1, 1, 1). It follows that
Z(D//m(123)) = 1 = Z(α0

1). The other two cases of this equation are similar.
Next consider Z(X−12X

+
34α5α

−1
6 //m(13)(4526)) = Z(α0

1α
0
2). Again we first study the disjoint union D =

X−12X
+
34α5α

−1
6 . Then ∆D = 1 and Q,W are given below:

QD =


0 t−1

t
0 0 0 0

0 − t−1
t

0 0 0 0
0 0 0 1− t 0 0
0 0 0 t− 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 W =


0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 1 0 0 1 1
0 1 0 0 0 1
0 0 0 0 0 0

 (I −WQ)−1 =


1 (t−1)2

t
0 1− t 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 − t−1

t
0 1 0 0

0 − t−1
t

0 0 1 0
0 0 0 0 0 1


Since MT =

(
1 0 1 0 0 0
0 1 0 1 1 1

)
we find MTQ(I −WQ)−1M = 0 and det(I −WQ)−1. Therefore

Z(D//m(13)(4526)) = 1 = Z(α0
1 t α0

2). The second equation is proven similarly.
Next consider Z(X1

12X
1
34X

1
56//m

(13)(25)(46)) = Z(X1
12X

1
34X

1
56//m

(35)(16)(24)). The disjoint union of the

left hand side is DL = X1
12X

1
34X

1
56. Then ∆DL = t−

3
2 and QDL ,WL are given below:

QDL =


0 1− t 0 0 0 0
0 t− 1 0 0 0 0
0 0 0 1− t 0 0
0 0 0 t− 1 0 0
0 0 0 0 0 1− t
0 0 0 0 0 t− 1

 WL =


0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 (I −WLQDL)−1 =


1 0 0 1− t 0 −(t− 1)2

0 1 0 0 0 1− t
0 0 1 0 0 0
0 0 0 1 0 t− 1
0 0 0 0 1 0
0 0 0 0 0 1


So det(I −WLQDL) = 1 and

MT
L =

 1 0 1 0 0 0
0 1 0 0 1 0
0 0 0 1 0 1

 MT
LQ(I −WLQDL)−1ML =

 0 1− t 1− t
0 t− 1 −(t− 1)t
0 0 (t− 1)(t+ 1)


Likewise, the disjoint union for the right hand side is DR = DL but with different WR,MR as shown below

WR =


0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 MT
R =

 0 0 1 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0

 (I −WRQDR)−1 =


0 1− t 1− t 0 0 0
0 t− 1 −(t− 1)t 0 0 0
0 0 (t− 1)(t+ 1) 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



So det(I −WRQDR) = 1 and MT
RQ(I −WRQDR)−1MR =

 0 1− t 1− t
0 t− 1 −(t− 1)t
0 0 (t− 1)(t+ 1)


For the final equation Z(X1

12) = Z(α1
1α

1
2X
±
34α
−1
5 α−1

6 //m(135)(246)) we consider the right-hand side as the

stitching of D = α1
1α

1
2X

1
34α
−1
5 α−1

6 , with ∆D = t−
1
2 and

QD =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1− t 0 0
0 0 0 t− 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 W =


0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 (I −WQD)−1 =


1 0 0 1− t 0 0
0 1 0 t− 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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This shows that with MT =

(
1 0 1 0 1 0
0 1 0 1 0 1

)
we have MTQ(I −WQ)−1M =

(
0 1− t
0 t− 1

)
and

det(I −WQ) = 1 as required.
This proves that W is indeed a snarl algebra. Therefore the corresponding invariant ZW is independent

of the chosen snarl diagram. In the next section we will see that in fact ZW is the Alexander polynomial.

4.2 Connection to the Burau representation and the Alexander polyno-
mial

For braids we can make the connection with the Burau representation βt : Bn → GL(n) [3] p.162. Recall on
generators σk we have βt(σk) = I − tEkk + tEkk+1 + Ek+1

k − Ek+1
k+1 . The special case β1 factors through the

symmetric group and just gives the permutation matrix induced by the braid. Also recall that the Alexander
polynomial may be defined (up to ±tk) as det1(I − βt(b)) where the subscript indicates the first row and
column of the matrix need to be deleted before taking the determinant.

Theorem 4. 1. Suppose b is a braid. Viewed as a snarl we may compute ZW(b) = t−
w
2 ee(βt(b)

T β1(b)−I)f ,
where w is the signed sum of the crossings (writhe).

2. For any knot K, viewed as a snarl, ZW(K) = ∆−1
K where ∆K is the Alexander polynomial of the knot.

Proof. Part 1) Building the braid from a disjoint union D of crossings we find that ∆D = t
w
2 . If we label

the pieces of D so that labels ending up in the same component are enumerated in order of appearance then
(1−WQ) is upper triangular with ones on the diagonal. This proves ∆b = t

w
2 . Moving on to Qb we aim to

prove that
βt(b) = β1(b)(I +Qb)

T (11)

Notice that this formula is correct when b = σ±1
k is a generator of the braid group or the identity. To prove

the general case it suffices to show that the right hand side is multiplicative in b. In other words we should
show that β1(b′)(I +Qb′)

Tβ1(b)(I +Qb)
T = β1(b′b)(I +Qb′b)

T . This is equivalent to showing

Qb′b = Qb +Qbβ1(b)TQb′β1(b) + β1(b)TQb′β1(b) (12)

This formula follows directly from stitching the ends of the disjoint union D = b t b′ where we number
the components of b by 1, 2, ..n as they appear at the bottom and likewise b′ by n + 1, ..2n. The precise
stitching rule is determined by the permutation β1(b) induced by b: the end i of b is stitched to the beginning
of component n+ β1(i) of b′. Therefore in the stitching formula the matrices QD,W,M have the following
block shapes:

W =

(
0 β1(b)T

0 0

)
QD =

(
Qb 0
0 Qb′

)
M =

(
I

β1(b)

)
The result (12) now follows from computing Qb′b = MTQ(1−WQ)−1M . Note the inverse is easy to compute
as it is an upper-triangular matrix.

Part 2) To see that QK = 0 for any knot, consider stitching the knot from a disjoint union D of crossings
and α’s and notice that MTQD = 0, hence QK = 0. Now view the long knot K as the partial closure of
braid b to interpret the inverse of the constant as the Alexander polynomial. By conjugating our braid we
may assume that only the first top and bottom strands are open and β1(b) is the permutation matrix of the
cycle (1, 2, 3, ..., n). At first let us ignore the α’s and stitch the ends of the braid directly.

We aim to show that the determinant det(I −WQb), arising from stitching the braid as above, equals
the determinant det1(I − βt(b)) defining the Alexander polynomial. As a first step notice that the bottom
row of WQb consists of zeroes. Hence det(I −WQb) = detn(I −WQb), where detk is the determinant after
deleting the k-th row and column.

The formula for Qb from part 1) indicates proving det1(I − βt(b)) = detn(I −W (βt(b)
Tβ1(b) − I)) is

enough. To prove this identity we note that the right hand side equals

det
n

((I−β1(b)T )(I−W (βt(b)
Tβ1(b)−I))) = det

n
(I−β1(b)T−β1(b)T (βt(b)

Tβ1(b)−I)) = det
n

(I−β1(b)Tβt(b)
Tβ1(b))

Conjugation by β1(b) and transposition turns it into the desired det1(I − βt(b)).
Had we included the α’s into the stitching the only thing that changes is we pick up a power t−

n
2 where

n is the number of strands in our braid (we are doing a closure to the right so we only pick up n copies of
α−1).

In fact the normalization of the Alexander polynomial we compute appears to be symmetric with respect
to t 7→ t−1.
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5 Generalization to the q-Weyl algebra

In this section we present the knot invariant built on a deformation of the Weyl algebra. The theory is
developed in complete analogy to the case of the usual Weyl algebra and the Alexander polynomial described
above. We will also indicate how this invariant relates to the knot invariant Z0 from the introduction.

Define the q-Weyl5 algebra Wq to be the associative algebra with generators 1, E, F and relation FE =
qEF + 1. To stay as close to the Alexander polynomial as possible we restrict ourselves to the special case
where our variable q satisfies q = 1 + ε and ε2 = 0. This means we consider our algebra over the base ring

R = Q(t
1
2 )[ε]/(ε2). Many of the techniques below apply to more general values of q but we leave this for

future work.
Alphabetic ordering of the monomials is used precisely as in the case of W to deal with infinite series.

The commutation relation between exponentials is as follows (recall that eεx = 1 + εx).

Lemma 4.

eyF exE = exEexye
ε(
y
2
+E)( x

2
+F )

eyF

And more generally:

n∏
i=1

exiEeyiF = e(x1+..+xn)Ee
∑
j xj(y1+..+yj−1)e

ε(
y1+..yj−1

2
+E)(

xj
2

+xj+1+..xn+F )

e(y1+..+yn)F

Proof. If we define [k] = 1−qk
1−q = k(1 + ε k−1

2
) and [a]! = a!(1 + εa(a−1)

4
) induction as in Lemma 1 shows

F bEa =
∑
j

[a]![b]!Ea−j(1 + jεEF )F b−j

[a− j]![j]![b− j]! =
∑
j

a!b!Ea−j(1 + εj(a+b
2
− 1− 3

4
(j − 1) + EF )F b−j

(a− j)!j!(b− j)!

The relations between the exponentials are a direct consequence.

We prefer to work in commutative setting so define Vq to be the power series ring R[[e, f ]] as in the
Alexander case. The map O : Vq →Wq defined by O(eafb) = EaF b is used to pull back the multiplication
m from Wq to Vq. Notice O remains a bijection in this more general set up. We claim the following makes
Vq into a snarl algebra.

Z(Xσ
i,j) = t−

σ
2 e(1−tσ)(ei−ej)fj+εP Z(ασi ) = t−

σ
2 eεσeifi

where

P = σ

((
1− tσ

4
eifj

)2

−
(

1 + tσ

4
ejfj

)2

+ tσeifj(ejfi +
1− t

2
((σ + 1)ejfj + (σ − 1)eifi))

)
To work with such formulas we need to develop good stitching (multiplication) formulas as we did in

the Alexander case. Since the arguments are entirely analogous we summarize the results in the following
lemma.

Lemma 5. For any ordered partition of the labels τ = (τ1, .., τn) and an n-element set of new labels L,
define W =

∑
{(i,j)|∃s:i,j∈τs,i≺j}E

i
j and A = (I −WQ)−1. Here ≺ refers to the ordering of the elements in

τk. Also set

S(x, y) =
t+ 1

t− 1

n∑
m=1

∑
j∈τm

( ∑
i≺j∈τm

yi

)
xj

1

2

∑
k≺j∈τm

yk + ẽj

xj
2

+
∑

j≺l∈τm
xl + f̃j


Then

mτ
L

(
eeQf+εP

∆

)
= (1 + εP (∂x, ∂y) + εS(∂e, ∂f ))

e(eQ+y)A(f+Wx)+ex

∆ det(I −WQ)
|x=y=0;ẽ,f̃ 7→e,f//r

τ
L

For any constant ∆ and matrix Q whose entries are indexed by L.

Proof. The proof is analogous to theW case. Without loss of generality we consider the case τ = (1, 2 . . . , n).
For any g ∈ V⊗Sq we have mτ (g) =

mτ (g(∂x, ∂y)eex+yf |x=y=0) = g(∂x, ∂y)mτ (eex+yf )|x=y=0 = g(∂x, ∂y)eyWx+xe+yf+εS(x,y)|x=y=0//r
τ

Here we used the commutation relation from lemma 4. Now set g = ∆−1eeQf+εP (e,f) and recall ε2 = 0 so
that we find

mτ (g) = ∆−1e∂xQ∂y+εP (∂x,∂y)eyWx+xe+yf+εS(x,y)|x=y=0;ẽ,f̃ 7→e,f//r
τ =

(1 + εP (∂x, ∂y) + εS(∂e, ∂f ))∆−1e∂xQ∂yeyWx+xe+yf |x=y=0;ẽ,f̃ 7→e,f//r
τ

Applying Lemma 2 gives us

(1 + εP (∂x, ∂y))(1 + εS(∂e, ∂f ))
e(eQ+y)(I−WQ)−1(f+Wx)+ex

∆ det(I −WQ)
|x=y=0;ẽ,f̃ 7→e,f//r

τ

as required.

5Often called q-Heisenberg algebra [8].
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The above formula may be simplified slightly since both P and S only depend on two of the four sets of

variables. We may rewrite it as mτ
L( eeQf+εP

∆
) = ZC+εZS+εZP

∆ det(I−WQ)
//rτL where

ZC = eeQAf ZS = S(∂e, ∂f )eeQAf |ẽ,f̃ 7→e,f ZP = P (∂x, ∂y)ee(QAW+I)x+yA(f+Wx)|x=y=0

Now that we know how to multiply (stitch) exponentials in Wq (or rather Vq) we are in a position to
turn it into a snarl algebra.

Proposition 1. Wq is a snarl algebra when we set

ZWq (Xσ
i,j) = t−

σ
2 e(1−tσ)(ei−ej)fj+εP ZWq (ασi ) = t−

σ
2 eεσeifi

where

P = σ

((
1− tσ

4
eifj

)2

−
(

1 + tσ

4
ejfj

)2

+ tσeifj(ejfi +
1− t

2
((σ + 1)ejfj + (σ − 1)eifi))

)

Proof. In checking the snarl algebra axioms we only need to pay attention to the ε-dependent part as the
rest together with the matrices Q,W etc are already computed in Section 4.1 where we proved that W was
a snarl algebra with a compatible snarl structure. Given the formulas for stitching in Lemma 5 checking the
axioms is a straightforward if tedious calculation. As such routine calculations are best done by computer
we refer the reader to the Mathematica implementation in the Appendix for more details.

By section any snarl algebra gives rise to a knot invariant. Hence we now have a knot invariant ZWq
coming from the snarl algebraWq. In the next section we explore some of its properties. We end this section
by showing how the formula for Z0 from the introduction follows from the above definition of ZWq .

Proposition 2. For any knot K, let CK be the coefficient of ε of the constant part of ZWq , i.e. when we
set e = f = 0. We have CK = Z0/∆

2
K , where Z0 was defined in the introduction.

Proof. Our set up is that of a knot diagram with n crossings and cuaps numbered in order of appearance as
described in the introduction. Denote the disjoint union of these elements as D. The knot K is obtained as
K = D//m

(12...n)
1 . To match the description of Z0 we will follow the instructions for computing the ε-part

of ZWq cutting a few corners along the way.

We start with the matrix W =
∑
i<j E

i
j . Next, the matrix QD is QD =

∑
Xsi,j

(1 − ts)(Eij − Ejj ). Set

A = (1 −WQ)−1 and S is as above. Since we are only interested in the constant term CK we may ignore
all parts that only contribute e or f . The formula becomes:

CK = PD(∂x, ∂y)eyAWx|x=y=0 + S̄(∂e, ∂f )eeQAf |e=f=0

Here S̄ is a simplified version of S without any irrelevant terms such as ẽj and f̃j :

S̄ =
t+ 1

t− 1

n∑
m=1

n∑
j=2

1

2

∑
i,k<j

yiyk

x2
j

2
+
∑
j<l

xjxl


The first term in CK is a sum over all crossings and cuaps where each monomial eifjekfl contributes
(AW )ij(AW )kl + (AW )il(AW )kj and xiyj contributes (AW )ij . Likewise each monomial yixjykxl of S̄ con-
tributes (QA)ij(QA)kl + (QA)il(QA)kj . As these expressions are nearly homogeneous in A and Q we chose

to rescale them: Q is replaced by Q̄ = Q/(t
1
2 − t−

1
2 ) and we set B = A−1 = I − (t

1
2 − t−

1
2 )WQ̄ as in the

introduction. In terms of B we have A = adj(B)/ det(B). The reader should now recognize the expres-
sions for ZH and ZG as the contributions of the crossings/cuaps and the polynomial S̄ scaled suitably with
H = adj(B)W and G = Qadj(B) as described.

We already know that ∆−1
K = c

1
2 det(B) is the normalized Alexander polynomial, where c is the correction

that comes from ∆D. This prompts us to scale PK by ∆2
K and not just by det(B)2 as we were about to.

6 Properties of ZWq

In this section we list some (conjectured) properties of the invariant ZWq coming from the q-Weyl algebra.
For simplicity we restrict ourselves to the case for knots.

Theorem 5. If a knot diagram for K is stitched from n fundamental snarls (X and α) then O(n6) operations

in the ring Z[t
1
2 , t−

1
2 ] suffice to compute ZWq .

Proof. By proposition 2 it suffices to consider computing Z0 as described in the introduction. Computing
the matrices G and H may be done in O(n4) steps. Their matrix entries are Laurent polynomials of degree
O(n) with coefficients bounded by O(2n). Since ZG has O(n4) terms and each term consists of multiplying

two entries of G, computing ZG takes O(n6) operations in Z[t
1
2 , t−

1
2 ]. Computing ZH is similar but faster

as it involves less terms.
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The above bound can be improved on quite a bit. For example a divide and conquer approach as in
[2] is expected to bring the complexity down to O(n5). For general snarl diagrams Lemma 5 and similar
arguments as above predict the number of operations is O(n8).

We remark that the algorithm being polynomial time is a qualitative feature that is independent of the
precise notion of complexity of the input used. This is because converting our knot to any other reasonable
format can be done in polynomial time (usually linear time). The precise cost of the ring-operations needed
is also of little consequence to polynomiality as all such operations can be done in polynomial time.

We end this section with three conjectures on our invariant ZWq (K) = 1
∆K

eeQKf+εPK or rather the
normalization

ρ1(K; t) = − t∆2
K

(1− t)2

(
PK − t

d

dt
log ∆K

)
Conjecture 1. The normalized knot invariant ρ1(K; t) is a Laurent polynomial in t with the following
symmetries.

1. If −K denotes the mirror image of a knot K then we have ρ1(−K) = −ρ1(K).

2. ρ1(K) is symmetric with respect to t 7→ t−1.

3. ρ1(K) is invariant under reversing the orientation of K.

In particular, ρ1 vanishes on amphicheiral knots as conjectured by Rozansky for his related invariant,
see below. The conjecture was checked experimentally for all knots up to 12 crossings.

As an illustration we list the value of ρ1 on the family of alternating torus knots T (2,±(2p+ 1)) where

p ∈ Z>0 is the closure of the braid σ
∓(2p+1)
1 in B2.

ρ1T (2,±(2p+ 1)) = ∓
p−1∑
k=0

1

2
(p− k)(p+ k + 1)(t2k+1 − t−2k−1)

Recall that the Alexander polynomial bounds the genus g as follows. Denote by maxdeg f(t) the highest
power of t in Laurent polynomial f . When written in its symmetric form, the Alexander polynomial satisfies
maxdeg ∆ ≤ g. A similar but sometimes more powerful bound is provided by ρ1.

Conjecture 2. For a knot K with genus g we have maxdeg(ρ1) ≤ 2g − 1.

This was checked experimentally for all knots up to 12-crossings and sometimes improves the genus
bound given by the Alexander polynomial. For example the knot 12313 has genus 2 [4] and trivial Alexander
polynomial, but the maximal power in t of ρ1 is 2. We expect this conjecture to follow from a formula for
Z in terms of a Seifert surface for the knot.

Conjecture 3. ρ1(K; t2) = t2

(1−t2)2
P (1)(K; t) where P (1) is the invariant of Rozansky defined in [14].

This conjecture is true for all knots up to nine crossings for which P (1) was computed in [12]. Briefly,
Rozansky showed that the colored Jones polynomial may be expanded in h = q − 1 as

Jα(q) =
∑
n≥0

hn(
∑

0≤m≤n

Dm,n(αh)2m)

such that the coefficients have the property
∑
m≥0 Dm,n+2m(αh)2m = P (n)(K;qα)

∆2n+1
K

(q
α
2 −q−

α
2 )

where ∆K is as above

and P (n)(K; t) is a Laurent polynomial.
The invariant P (1) is also known as the 2-loop invariant and was studied from the Kontsevich integral

point of view by Ohtsuki in [10]. His work includes a similar genus bound so that the second conjecture will
follow from the last.

Instead of deriving our invariant as an expansion of the colored Jones polynomial, we in some sense
expanded the underlying quantum group itself. Our invariant may be interpreted as the universal invariant
[11] for some simplified versions of Uq(sl2) or rather the Drinfeld double [5] of the universal enveloping
algebra of the Borel subgroup of sl2. In a sequel to this paper we will explain a general theory for solvable
approximation of Lie algebras and how it may be used to derive effective knot invariants. In particular we
expect polynomial time algorithms for all of Rozansky’s invariants P (n). Our approach is also expected to
yield formulas for strand reversal and doubling using Hopf-algebraic techniques. This might yield a proof of
the first two conjectures.

7 Summary and outlook

After formulating a convenient local notion of knot diagrams called snarl diagrams, we constructed a powerful
new knot invariant from the q-Weyl algebra. This algebra has two generators and one relation EF−qFE = 1.
We considered the cases q = 1 and q = 1 + ε with ε2 = 1. The first yields the Alexander polynomial, while
the latter is new. Both may be computed in polynomial time using normally ordered exponentials. As such
our invariant is the strongest known knot invariant computable in polynomial time, this is illustrated in the
table in the appendix: all knots up to ten crossings are distinguished.
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In future work we plan to show that our techniques apply to algebras much more general than the Weyl
algebras presented here. For example we expect that the invariants coming from appropriately truncated
Drinfeld doubles of universal enveloping algebras of solvable Lie algebras yields similar invariants. All com-
putable in polynomial time. In this context the q-Weyl algebra arose from considering the two-dimensional
non-abelian Lie algebra. We also hope to clarify connections to classical invariants such as the genus and
with Rozansky’s work on the colored Jones polynomial.
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Appendix: Implementation

In this appendix we briefly describe an implementation of the knot invariant described in this paper in
Mathematica. This serves two purposes. First it allows us to automatically verify the snarl axioms hold as
claimed in Proposition 1. It also allows us to compile a table of the values of our invariant on the table of
prime knots up to 10 crossings. The program and table are available at http://www.rolandvdv.nl/MLA/

The program encodes our invariant ZWq (K) = 1
∆

eeQf+εP as E[∆, Q, P ], where ∆ is a Laurent polynomial

in t and Q (really eQf) is a quadratic in ei, fi with coefficients in Q(t
1
2 ) and P is a quartic in the same

variables.
To specify the stitching mτ we use a list of disjoint subsets τ i of the label set. For simplicity, after

stitching all components in τ i are renamed i. To improve clarity, disjoint union is written as juxtaposition.

The program

Introducing the canonical form, disjoint union and some utilities:

The program for stitching, implementing Lemma 5:

The values of ZWq on the fundamental tangles:
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Verification of Proposition 1

The following commands verify the computations required for Proposition 1 and also Section 4.1, the output
is trivial as expected.

Sample output

As a sample calculation we apply our algorithm to a snarl diagram of the figure eight knot. The disjoint
union of the fundamental snarls it is built up from is shown in figure 4.

Figure 4: A diagram for the figure eight knot 41 about to be stitched together from a disjoint union of fundamental
snarls. Rotation numbers ρ are not listed but should be clear from the picture.
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