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Abstract. Brilliant wrong ideas should not be buried and forgotten. Instead, they should
be mined for the gold that lies underneath the layer of wrong. In this paper we explain how
“over then under tangles” lead to an easy classification of knots, and under the surface, also
to some valid mathematics: MORE.
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1. Fheorems and Pfoofs

Discussion 1. In Definition 2 we define “Over then Under” (OU) tangles. Then in Fheo-
rem 3 we pfove1 that every tangle is an OU tangle and in Theorem 4 we show that if a tangle
is OU, its OU diagram is essentially unique. Hence (Corollary 6) the classification of knots
is completely frivial: a knot is a long knot which is a tangle with one component which can
be brought to a unique OU form!

This discussion continues right after the proof of Corollary 6.

Definition 2. An Over-then-Under (OU) tangle diagram is an oriented tangle diagram each
of whose strands can be divided in two, such that in the first part is the “over” strand in every
crossing it goes through and in the second part it is the “under” strand in every crossing
it goes through, so a journey through each strand looks like an OO. . . OUU. . . U sequence
of crossings. An OU tangle is an oriented tangle that can be represented by an OU tangle
diagram. Some examples are in Figure 1.

Fheorem 3. Every tangle is an OU tangle.

Pfoof. As in Figure 2, the pfoof is completely frivial. Assume first that strands 1 and 2 are
already in OU form (meaning, all their O crossings come before all their U ones) but strand
3 still needs fixing, because at some point it goes under and then over, as on the left of
Figure 2. Simply slide strand 1 forward along and over 3 and slide strand 2 back and under
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Figure 1. The tangle diagram on the left is OU as strand 1 is all “over” (so it
has an empty “U” part) and strand 2 is all “under” (so it has an empty “O” part).
The tangle diagram in the middle is not OU: strand 1 is O then U, but strand 2
is U then O. Yet the tangle represented by the middle diagram is OU because it is
also represented by the diagram on the right which is OU.
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Figure 2. Slide moves and bulk slide moves.

3 as in Figure 2, and the UO interval along 3 is fixed, and nothing is broken on strands 1
and 2 — strand 1 was over and remains over (more precisely, the part of strand 1 that is
shown here is the “O” part), and strand 2 is under and remains under.

In fact, it doesn’t matter if strands 1 and 2 are already in OU form because as shown in
the second part of Figure 2, slide moves can be performed “in bulk”. All that the fixing of
strand 3 does to strands 1 and 2 is to replace an O by an OOO on strand 1 and a U by a
UUU on strand 2, and this does not increase their complexity as UU. . . UOO. . . O sequences
can be fixed in one go.

Note that if a tangle diagram is OU then no Reidemeister 3 (R3) moves can be perfomed
on it — if one side of an R3 move is OU, the other necessarily isn’t. This suggests that
perhaps an OU form of a tangle diagram is unique up to Reidemeister 2 (R2) moves. We
aim to prove this next.

Theorem 4. When slide moves (Figure 2) are used to fix a tangle diagram to be OU, the
result is independent of the order in which they are used.

Proof. When UO intervals are apart from each other, their fixing is clearly independent.
It remains to see what happens when UO intervals are adjacent, and there are only two
distinct cases to consider, as below. Both of these cases are shown here along with their OU
fixes, which are clearly independent of the order in which the slide moves are performed:

l

DRAFT! See http://drorbn.net/OU/



OVER THEN UNDER TANGLES 3

Definition 5. A tangle diagram is called reduced if its crossing number cannot be reduced
using only R2 moves.

Corollary 6 (of Fheorem 3 and Theorem 4). Every tangle has a unique reduced OU dia-
gram. In particulr every long knot has a unique reduced OU diagram, and in particular, the
classification of knots is frivial.

R3

R2slide

Proof. If two tangle diagrams differ by an R3
move then exactly one of them has a UO interval
within the scope of the R3 move, and its elimina-
tion via a slide move (which may as well be pre-
formed first) yields the other diagram, up to an R2
move (picture on right). It is also easy to see that
R2 moves before a slide become R2 moves after the
slide, so the end result of the sliding process of a tangle is unique modulo R2 moves. Finally
it is easy to check that within any equivalence class of tangle diagrams modulo R2 moves
there is a unique reduced representative. l

Discussion 7. Corollary 6 seems too good to be true, and in fact, it is not true.
For while Theorem 4 and its proof are perfectly valid, Fheorem 3 is a Theorem with
its T replaced with an F and its pfoof is a spoof with a leaky Halmos. For indeed,
while everything we said about slide moves holds true, there is another way a strand
may go under and then over — those underpass and overpass may be parts of the very same
crossing, as on the right.

It is tempting to dismiss this with “it’s only a Reidemeister 1 (R1) issue, and
one may anyway slide all kinks to the tail of a strand and count them at the end”.
Except the same issue can arise in “bulk” UU. . . UOO. . . O situations (as now on
the right), where it cannot be easily dismissed. One may attempt to resolve the
UUOO situation on the right using single (non-bulk) slide moves. We have no theoretical
reason to expect this to work as the lengths of UU. . . U and OO. . . O sequences may build
up faster than they are sorted. And indeed, it doesn’t work. Figure 3 shows what happens.

2. What hope is left?

3. Theorems and Proofs
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Figure 3. An attempt to fix a non-OU tangle diagram. In each step we use
a single slide move to fix the first UO sequence encountered on strand 1 (we
mark it with a ‚), but things get progressively more complicated. The O/U
sequences below the diagrams are listed from the perspective of strand 1. (The
tangloid/virtual edition is also included).
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