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Abstract

The study of finite type invariants is central to the development of knot theory. Much
of the theory still needs to be extended to the newer virtual context. In this article, we
calculate the dimensions of the spaces of virtual finite type knot invariants and associated
graded algebras for several classes of virtual knots to orders four and five. The data
obtained highlights a certain pattern on all the “reasonable” classes of knots that we
considered, and in turn supports the conjecture that all weight systems integrate.

1 Finite Type Invariants of Virtual Knots
Kauffman’s theory of virtual knots extends the standard theory, see [5]. A type n invariant in
the virtual context vanishes on virtual knots containing greater than n semi-virtual crossings,
where a semi-virtual overcrossing, Q, is given by !−P, and a semi-virtual undercrossing,R,
by −"+P. Thus, double points are the difference of semi-virtual crossings and virtual type
n invariants restrict to standard finite type invariants of type less than or equal to n.

The first result in this article is the computation of the dimensions of the spaces of virtual
finite type invariants and long virtual finite type invariants. They are given to order five in
table 1, and were calculated using a code written for the purposes of this paper, see Section
4. The original source code can be found at [10].

k round long
2 0 2
3 1 9
4 5 51
5 ? ?

Table 1: Dimensions of the spaces of virtual finite type invariants

Using the same code, we were able to compute the dimensions of the associated graded
algebras. The results are tabulated in table 2.

Looking at the table, we see a striking contrast between how the size of the integers in the
round column and the long column differs, but there is much more. The kth dimension of the
associated algebras plus the (k − 1)st dimension of the space of finite type invariants equals
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k round long
2 0 2
3 1 7
4 4 42
5 ? ?

Table 2: Dimensions of the associated graded spaces

the kth dimension of the space of finite type invariants. This pattern empiricaly supports the
following conjecture which is well known in lore, see Section 3 for details.

Conjecture 1.1. Every weight system integrates to a virtual finite type invariant.

Section 2 looks at further classes of knots and how the same pattern continues, Section 3
looks at what this means and how the data suports Conjecture 1.1, and Section 4 gives details
about the code.

2 Variations of the Finite Type Invariant Spaces and Their
Dimensions

Instead of the space of long virtual knot diagrams, VKD, modulo the R1, R2 and R3 moves,
we can consider other quotient spaces where we take the quotient of VKD by a subset of the
set the Reidemester moves. The map s : VKD −→ VKD taking a diagram to the sum of all
its subdiagrams, which is discussed in [9] and [3] and leads to the construction of a universal
finite-type invariant, takes the Reidemeister moves to the following relations respectively,
which also appear in [3]. The dotted arrows represent semivirtual crossings.

Figure 1: The image of R1 under s.

Figure 2: The image of R2 under s.

Depending on the orientation of the vertical arrows, each of these relations corresponds to
two versions of a Reidemeister move. For the first relation, we have the correspondence with
R1+ or R1−, where the sign refers to the sign of the crossing. The second relation corresponds
to R2b or R2c, namely a braid-like or cyclic Reidemeister two move depending on whether all
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Figure 3: The image of R3 under s.

the strands point in the same direction or not. Similarly, he relation in Figure 3 corresponds
to R3b or R3c. These moves are shown in the Figures 2 and 5 below.

Figure 4: RI+ and RI−

Figure 5: R2b, R2c, R3b and R3c

The Reidemeister three move can also be split into R3− and R3+, namely R3 with only
positive crossings. Yet, given R2b, R3+ implies R3− so we need only consider R3+. Further
relationships between those six moves are as follows:

1. R1, R2b, and R3c together imply R2c.

2. R3b and R2c give us R3c.

It is of interest to consider the spaces of finite type invariants on these different quotient
spaces of virtual knot diagrams. We have computed the dimensions of some of these spaces in
the table below. For the original code see [10]. The notation for the table is as follows: IfWm

refers to the quotient space of virtual knot diagrams VKD/{R3b, R2b} where we set diagrams
with more than m real crossings to be 0, then Vm is the space of finite type invariants on
Wm. The superscripts in the table indicate further relations that have been included in the
quotient: “1” refers to the R1 move and leads to framing independence, “2c” refers to the
R2c move, “no3b” means not including the R3b relation in the quotient, o refers to the round
knot case and tc refers to the “tails commute” relation, illustrated in figure 6, which deals
with the w-knots case described in [1]. In each box of the table ,the first number gives the
non-graded and the second number gives the graded dimension.
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Figure 6: Tails Commute

m Vm Vtcm V2c
m Vo,no3bm V2c,no3b

m

2 9, 7 6, 4 7, 5 5, 4 12, 10
3 36, 27 13, 7 22, 15 27, 22 108, 96
4 175, 139 25, 12 89, 67 245, 218 1440, 1332
5 ? 297 ? ? ?

Table 3: Computed Dimensions without Framing Independence

Comparison of the obtained results with those in [1] suggests that Conjecture 1. can be
extended to all studied classes of knots:

Conjecture 2.1. For all considered classes of virtual knot diagrams, every weight system
integrates.

Even more generally, it is reasonable to conjecture, based on the wide range of support-
ing results, that using any set of meaningful knot theoretic relations, every weight system
integrates. The additivity of dimensions between the spaces of finite type invariants and the
associated algebras described in the previous section is also observable for the considered
variations, which further supports the conjecture.

3 Interpretation
Let Wn be any variation of the space of virtual knot diagrams (i.e. the image under s of
VKD/R where R contains R2b, R3b and possibly other relations). We consider the sequence
of subsets

0 = Πn,n+1 ⊆ Πn,n ⊆ · · · ⊆ Πn,1 ⊆ Πn,0 =Wn

where each Πn,k is comprised of diagrams of degree ≥ k and ≤ n. Note for m,n ≥ k,
Πn,k/Πn,k+1 ∼= Πm,k/Πm,k+1. For each k, we define

Gk := Πn,k/Πn,k+1,

m V1
m V1,tc

m V1,2c
m V1,tc,o

m V1,2c,o
m V1,2c,no3b

m

2 2, 2 1, 1 2, 2 0, 0 0, 0 2, 2
3 9, 7 2, 1 9, 7 0, 0 1, 1 30, 28
4 51, 42 4, 2 51, 42 0, 0 5, 4 450, 420
5 ? ? ? ? ? 8258, 7808

Table 4: Computed Dimensions with Framing Independence
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where n is some number greater than or equal to k. We have a function

ιk : Gk −→Wk

which maps each diagram in Gk to itself, so every diagram inWk with k arrows has a preimage.
n∑
k=1

dim(Gk) = dim(
n⊕
k=1
Gk) ≥ dim(

n⋃
k=1
Wn,k) = dim(Wn). (1)

If F is the base field we can draw the following commutative diagram:

Wn
νs−1sn // F

Gn

ιn

OO

νs−1snιn

>>||||||||

.

Since W∗n is the space of invariants of at most type n ([3]), if all weight systems integrate to
finite type invariants, the adjoint map ι∗n : W∗n → G∗n is surjective. This is equivalent to ιn
being injective.

Definition 1. A weight system is an element of G∗k

Therefore all weight systems integrate to finite type invariants if all ιn are injective. We
have the following proposition.

Proposition 3.1. If the map ιk : Gk →Wk is injective for all k ≤ n, then given m ≤ n,

dim(Wm) =
m∑
k=1

dim(Gk).

In particular dim(Wn) =
∑n
k=1 dim(Gk).

Proof. The proof is by induction. Since there are no relations equating diagrams of degree
0 and diagrams of degree 1, G1 = W1, and dim(G1) = dim(W1). Suppose, as our inductive
hypothesis,

m−1∑
k=1

dim(Gk) = dim(Wm−1).

Since ιm : Gm → Wm is injective, and the image contains exactly the diagrams with m
arrows,as a vector space, Wm is a direct sum of Wm−1 and Gm. Therefore

dim(Wm) = dim(Wm−1) + dim(Gm) =
m∑
k=1

dim(Gk)

By looking at the tables we have evidence suggesting that all weight systems integrate.
Since the contrary would be too much coincidence, we conjecture the following:

Conjecture 3.2. Weight systems of G{R2b,R3b}
n , G{R2b,R2c,R3b}

n and G{R1,R2b,R2c,R3b}
n integrate

to corresponding finite type invariants.
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Figure 7: The 6T relation

In partiuclar, when Wn is the space of virtual knot diagrams modulo R2b and R3b, Gn is
the algebra ~An of arrow diagrams mod 6T ([7]). The relation 6T is shown in diagram 7.

The spaces ~An are of particular interest because of their relations to Lie bialgebras
([1],[4],[6]). The dimensions of ~Ak for k = {1, 2, 3, 4} are 2, 7=9-2, 27=36-9 and 139=175-36,
respectively ([1]). Therefore, (1) is an equality, so Conjecture 3.2 suggests that all weight sys-
tems of ~An integrate to finite type invariants of virtual knot diagrams modulo R2b and R3b.
Note, however, that since 27>22 and 139>89, the column V2c

m and Proposition 3.1 together
tell us that not all weight systems (functionals) of arrow diagrams modulo 6T integrate to
finite type invariants which respect R2c. This suggests that if our study of finite type invari-
ants is entirely motivated by ~An, we should focus on virtual knot diagrams modulo only R2b
and R3b. A challenge is to come up with topological interpretations of such objects.

4 The Code
The results of this paper come from a computer program, [10], so, how does this code work?
Firstly, the program finds all arrow diagrams of fixed order, followed by all relations which are
generated from the initial relations we impose, finally we are left with linear algebra and it
remains to find the rank of a sparse matrix. We collect the number of diagrams and number of
relations in table 5. The two numbers for each space and dimension are collected in boxes with
the top number representing the number of diagrams and the bottom number representing
the number of relations.

m Vm V1
m Vtcm V1,tc

m V2c
m V2c,gr

m V1,2c
m V1,2c,gr

m Vom V1,tc,o
m V1,2c,o

m

2 14 4 14 4 ? ? ? ? ? ? ?
6 6 9 9 ? ? ? ? ? ? ?

3 134 44 134 44 ? ? ? ? ? ? ?
126 126 189 189 ? ? ? ? ? ? ?

4 1814 620 1814 620 ? ? ? ? ? ? ?
2646 2646 3969 3969 ? ? ? ? ? ? ?

5 ? 11148 ? ? ? ? ? ? ? ? ?
? 63126 ? ? ? ? ? ? ? ? ?

Table 5: Number of Diagrams and Relations
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In fact, the spaces of arrow algebras modulo the specified relations are all isomorphic
to their dual spaces and the elements correspond to the Gauss diagram formulas for virtual
finite type invariants. Thus, by computing the basis of the relevant space, the code computes a
maximal set of linearly independent Gauss diagram formulas for virtual finite type invariants.
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