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Abstract

Real finite type invariants have diagrammatic descriptions and relate to Lie
Algebras. Analogues of the corresponding results for virtual finite type invariants
exist, but are less well understood. This article collects computational results
about the dimensions of the Polyak algebra and other spaces related to virtual
finite type invariants. The code describes the corresponding Gauss diagram for-
mulas for virtual finite type invariants to order five, shows that not all weight
systems integrate, and motivates a class of virtual knot where only “braid-like
Reidemeister moves” are permitted. In this new class of knot, the collected data
suggests a conjecture.

1 Introduction
Universal finite type invariants contain the power of all finite type invariants, and are
central to their study. Consideration of an algebra due to M. Polyak, M. Goussarov, and
O. Viro, [3], called the Polyak algebra, gives access to a computable universal virtual
type n invariant and is the subject of this article. We will see that the invariant itself
is simply a clever change of basis on the space generated by virtual knot diagrams, see
Section 2.

The outline of the paper is as follows; Section 2 introduces the Polyak algebra, and
motivates the subsequent two sections which contain the main content of the paper.
Section 3 deals with relations on the space of arrow diagrams and tabulates the results
from code written for the purposes of computing the dimensions of these spaces. Section
4 talks about associated algebras, the significance of the data from Section 3, answers
the question of whether all weight systems can be integrated, and culminates with a
conjecture connecting arrow diagrams mod 6T and a new class of knot allowing only
“braid-like” Reidemeister moves.
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2 The Polyak Algebra
We start with a short account of the Polyak algebra, which comes mostly from [3]. To
begin, we need the following definition:

Definition 1. The map s on a virtual knot diagram is the sum of all subdiagrams,
while the map sn is the map that truncates this sum to contain only diagrams with less
than or equal to n crossings.

Here, a subdiagram is the obvious thing, simply a diagram obtained by virtualising
some number of crossings. With this in mind, the maps s and sn are written schemati-
cally by !→ !+P, thus s−1 exists and sends real crossings to semi-virtual crossings.
For details see [3], [8].

Now, the map sn is only well defined on diagrams, and we require a map on knots.
To account for this, we need to keep track of the Reidemeister moves. In particular,
we need to factor out our domain by the Reidemeister moves and our range by s of the
Reidemeister relations. This gives a map from the space of virtual knots, VK, to the
so called Polyak algebra, P . Of course, now s becomes an isomorphism of the space
generated by knots. The truncated Polyak algebra is denoted Pn.

The point is that any virtual type n invariant, ν, factors through the map sn :
VK → Pn precisely because s−1 sends real crossings to semi-virtual crossings and ν is
of type n;

ν(D) = νs−1s(D) = νs−1sn(D) + νs−1(Σ|Ci|>nCi) = νs−1sn(D)

We obtain a commutative diagram;

VK ν //

sn
��

G

Pn
νs−1

==||||||||

In other words, sn : VK → Pn is a universal type n invariant.
Now Pn is finite dimensional, and so ν is determined by its values on a basis of Pn,

a finite set. Letting B be a basis for Pn we can see that ΣD∈B(νs−1(D)D) is a Gauss
Diagram Formula for ν, see [3], [7], [8]. Thus, every virtual finite type invariant has a
Gauss diagram formula.

Starting at the other end, all elements of P∗n correspond to virtual finite type in-
variants under composition with sn because any real crossing may be expressed as a
sum of a semi-virtual crossing and the same diagram but with the specified crossing
virtualized, while sn sends semi-virtual crossings to real crossings before truncating.
Further, elements of Pn implicitly subsume sn of the Reidemeister moves making the
composition of our functional with sn an invariant.

Our code, [9], describes a basis of Pn to order five. The code also draws the actual
diagrammatic formulas, see [9]. Thus all virtual type n invariants are classified in terms
of their Gauss diagram formulas to order five, see Section 3.
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So far we have seen the strengths of Pn and its connection to virtual finite type
invariants, however the algebra lacks a grading. This is in contrast to the space of
arrow diagrams mod 6T known as the arrow algebra ~A. The homogeneous peices, ~An,
give the grading, and and can be thought of as being given by virtual knot diagrams mod
sn of Reidemeister three. It is exactly the graded structure that leads to Lie algebras
in the real case, [2], and to Lie bialgebras and Quantum groups in the virtual case,
[4]. In the real setting, functionals may be “integrated” to form finite type invariants,
[10]. Our computations answer the corresponding question for ~An in the virtual case,
see Sections 3 and 4. The answer leads naturally to “new” Polyak algebras and the
experimental evidence from our code, [9], raises an interesting conjecture, see Section
4.

3 Variations of the Polyak Algebra and Their Di-
mensions

3.1 The Polyak algebra relations
Given the algebra of arrow diagrams A, the Polyak algebra described in [GPV] is
obtained through taking the quotient of A by the relations illustrated in Figures 1, 2,
and 3 which also appear in the original article. Each of the dotted arrows signifies a
semivirtual crossing: Q = !−P (respectively R = "−P ).

Figure 1:

Figure 2:

3.2 Braid-like and cyclic Reidemeister moves
In making the connection between the relations above and the Reidemeister moves, we
observe that each Reidemeister move can be split into two types. The two variations of
the RI move, are with a positive or a negative crossing, while the RII and RIII moves
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Figure 3:

can be braid-like (RIIb and RIIIb) or cyclic (RIIc and RIIIc), depending on whether
all the strands go in one direction or form a cycle respectively. The Reidemeister
three move can also be split into RIII− and RIII+, namely RIII with only positive
crossings. Yet, given RIIb, RIII+ implies RIII− so we need only consider RIII+.

Figure 4: RI+ and RI−

Figure 5: RIIb, RIIc, RIIIb and RIIIc

Then, given the virtual Reidemeister three moves with two virtual crossings, we
have that RIIIb is equivalent to the eight-term (8T) relation in Figure 3. Furthermore,
RIIb and RIIc are equivalent to the two four-term relations in Figure 2 and the two RI
moves are equivalent to the relations in Figure 1. With those equivalences established,
the original Polyak algebra P is P = A/{RI,RII,RIII}, namely the quotient of A
by all types of Reidemeister I, II and III moves. It is of interest to consider other
Polyak algebras obtained from taking the quotient of A by a subset of the six types of
Reidemeister moves. Further relationships between those six moves are as follows:

1. RI, RIIb, and RIIIc together imply RIIc.

2. RIIIb and RIIc give us RIIIc.
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3.3 Results
Given any variation P ′ of the Polyak algebra reached through the described method,
we can, in parallel to the [GPV] article, consider the truncated algebra P ′m where any
diagram in P ′ with more than m arrows is taken to be 0. The table below shows the
calculated dimensions of several such truncated variations of the Polyak algebra. The
truncated quotients used in the computations are listed below. TC refers to the “tails
commute” relation, which diagrammatically is: The “tails commute” relation relates to

Figure 6: Tails Commute

w-knots mentioned in [1].

m P1
m P2

m P3
m P4

m P5
m P6

m P7
m P8

m P9
m P10

m P11
m

2 9 2 6 1 7 5 2 2 5 0 0
3 36 9 13 2 22 15 9 7 27 0 1
4 175 51 25 4 89 67 51 42 245 0 5

Table 1: Computed Dimensions

P1 = A/{RIIIb, RIIb}
P2 = A/{RIIIb, RIIb, RI}
P3 = A/{RIIIb, RIIb, TC}
P4 = A/{RIIIb, RIIb, TC,RI}
P5 = A/{RIIIb, RIIb, RIIc}
P6 = Gr(A/{RIIIb, RIIb, RIIc})
P7 = A/{RIIIb, RIIb, RIIc, RI}
P8 = Gr(A/{RIIIb, RIIb, RIIc, RI})
P9 = A(,)
P10 = A(,)/{RIIIb, RIIb, TC,RI}
P11 = A(,)/{RIIIb, RIIb, RIIc, RI}

Gr above means the graded quotient, and A(,) refers to the compact knots case, as
opposed to long knots.

4 The Associated Graded Algebras
Definition 2. ([6]) ~Ak is the space of arrow diagrams with k arrows modulo 6T. A
degree-k weight system is an element in ~A∗k.
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Figure 7: The 6T relation

The 6T relation is shown in figure 7. As previously remarked, ~Ak’s are of interest
because of their relations to Lie bialgebras ([1],[4],[5]). Let Pn be any variations of the
Polyak algebra (i.e. arrow diagrams mod RIIb, RIIIb with possibly other relations).
We have a map ιn : ~An → Pn which takes a diagram to itself and the following
commutative diagram:

Pn
νs−1sn // G

~An

ιn

OO

νs−1snιn

??��������

.

We consider the special case where G is the base field. Since P∗n is the space of invariants
of at most type n ([3]), if all weight systems integrate to finite type invariants, the adjoint
map ι∗n : P∗n → ~A∗n is surjective. This is equivalent to ιn being injective.

To determine whether this is the case we consider the filtration

0 = Πn,n+1 ⊆ Πn,n ⊆ · · · ⊆ Πn,1 ⊆ Πn,0 = Pn

where each Πn,k is comprised of diagrams of degree ≥ k and ≤ n. The associated graded
algebra

gr(Pn) =
n⊕
k=1

Πn,k/Πn,k+1

is isomorphic to Pn as a vector space. For each k, by mapping each diagram in ~Ak to
itself, we get a surjective map

µn,k : ~Ak � Πn,k/Πn,k+1 ⊆ gr(Pn),

so, for all k ≤ n,
dim( ~Ak) ≥ dim(Πn,k/Πn,k+1), (1)

which implies
n∑
k=1

dim ~Ak ≥ dim(gr(Pn)) = dimPn. (2)

We have the following proposition.

Proposition 1.
n∑
k=1

dim ~Ak = dim(gr(Pn)) = dimPn

if and only if the map ιk : ~Ak → Pk is injective for all k ≤ n.
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Proof. If ιk : ~Ak → Pk is injective for each k, since the image of this map is exactly
Πk,k/Πk,k+1 ∼= Πn,k/Πn,k+1, (1) will be an equality, and so will be (2). Conversely if (2)
is an equality, (1) will have to be an equality, for each k. Since µn,k is surjective, it
must be injective. Since Πk,k/Πk,k+1 ∼= Πn,k/Πn,k+1, µk,k and ιk are injective.

The injectivity of ιk : ~Ak → Pk is equivalent to ~Ak being isomorphic to the degree-
k homogeneous subspace of gr(Pn). The dimensions of ~Ak for k = {1, 2, 3, 4} are
2, 7, 27 and 139, respectively ([1]). From the table above we know that (2) is an
equality if we take Pn to be the quotient by only RIIb and RIIIb, and not RIIc.
This suggests that not all weight systems of arrow diagrams modulo 6T integrate to
finite type invariants which respect RIIc. Alternatively, this suggests that if our study
of finite type invariants is motivated by arrow diagrams mod 6T, we should focus on
virtual knot diagrams modulo only RIIb and RIIIb. A challenge is to come up with
topological interpretations of such objects.
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