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Abstract. We explain a direct topological proof for the multiplicativity of Duflo isomor-
phism for arbitrary finite dimensional Lie algebras. The proof follows a series of implications,
starting with “the calculation 1+1=2 on a 4D abacus”, using the study of homomorphic
expansions (aka universal finite type invariants) for ribbon 2-knots, and the relationship be-
tween the corresponding associated graded space of arrow diagrams and universal enveloping
algebras. This complements the results of the first author, Le and Thurston, where similar
arguments using a “3D abacus” and the Kontsevich Integral was used to deduce Duflo’s the-
orem for metrized Lie algebras; and results of the first two authors on finite type invariants
of w-knotted objects, which also imply a relation of 2-knots with the Duflo theorem in full
generality, though via a lengthier path.

1. Introduction

For a finite dimensional Lie algebra g, the Duflo isomorphism is an algebra isomorphism
D : S(g)g → U(g)g, where U(g)g and S(g)g are the g invariant subspaces for the adjoint
action of g on the universal enveloping algebra and the symmetric algebra. (Recall x is called
invariant if g ·x = 0 for every g ∈ g.) The map D is given by an explicit formula. The difficulty
is in showing that this formula represents a homomorphism, namely that it is multiplicative.
We will henceforth refer to the problem of showing the multiplicativity of the Duflo map as
the Duflo problem.

The Duflo isomorphism was first described for semi-simple Lie algebras by Harish-Chandra
in 1951 [HC]. Kirillov conjectured that a formulation of Harish-Chandra’s map was an algebra
isomorphism for all finite dimensional Lie algebras. Duflo proved Kirillov’s conjecture in
1977 [D], and it is now referred to as Duflo’s Theorem. Since then, there have been many
proofs of Duflo’s theorem using techniques outside the setting of the originally formulated
problem. For metrized Lie algebras, a topological proof was found by the first author, Le and
Thurston in 2009 [BLT] using the Kontsevich integral and a knot theoretic interpretation of
“1+1 = 2 on an abacus”. In this paper we give a new topological proof of Duflo’s theorem for
arbitrary finite dimensional Lie algebras using a “4-dimensional abacus” instead of an ordinary
3-dimensional one.

The Dulfo problem is also implied by the now-proven Kashiwara–Vergne (KV) conjecture
[KV]. The KV conjecture states that a certain set of equations has a solution in the group of
tangential automorphisms of the degree completed free Lie algebra on 2 generators. One can
extract the Duflo isomorphism from such a solution. The KV conjecture was proven by [AM] in
2006 using deformation quantization. New proofs exploiting the relationship between the KV
equations and Drinfel’d associators were found by Alekseev, Torossian and Enriquez shortly
thereafter [AT,AET]. A topological context and solution in terms of the 4-dimensional knot
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“1 + 1 = 2” Topological Statement in w-foams

⇓Z homomorphic expansion

Diagrammatic Statement
Z(1)#Z(1) = ∆Z(1) in “arrow diagrams”

⇓T tensor interpretation map

Tensor Statement
T (Z(1)#Z(1)) = T (∆Z(1)) in Ŝ(g∗)g ⊗ Û(g)

⇓
Duflo isomorphism

# = =∆ # = =∆

Figure 1. The rough sketch of the proof.

theory of w-foams was established by the first two authors in [BD2, BD3]. In this context,
the KV-conjecture is equivalent to the existence of a homomorphic expansion for w-foams. In
this paper, we directly address how such a homomorphic expansion gives rise to a solution
of the Duflo problem and a formula for D, and thus completing a topological solution of the
Duflo problem in full generality.

This paper is structured to follow the implications shown in the Figure 1. We start with
an intuitive topological statement “1 + 1 = 2” and interpret this in the setting of w-foams.
Using the homomorphic expansion Z and the tensor interpretation map T , we can re-interpret
“1 + 1 = 2” as an equality in Ŝ(g∗)g⊗ Û(g). This will imply that our formulation of the Duflo
isomorphism is an algebra homomorphism. The essential ingredient in this process is the
homomorphic expansion Z of [BD2,BD3].

2. Understanding the Topological Statement and w-foams

2.1. “4D Abacus Arithmetic”. The “threaded sphere” or “abacus bead” shown in Figure 2
is a knotted object in R4, and an element of the space of w-foams studied in [BD2]. To
understand this 4D object, we describe it as a sequence of 3D slices, or “frames of a 3D
movie”. The movie starts with two points A and B. Point B opens up to a circle, A flies
through the circle, and B closes to a point again. In 4 dimensions this is a line threaded
through a sphere with no intersections; and embedded pair. We depict this object as ;
this is a broken line/surface diagram in the sense of [CS].

We can interpret “addition on the 4D abacus” by iteratively threading embedded spheres on
a single thread, or in other words, connecting along the threads, as shown in Figure 3. There
are two ways to obtain the number 2 from the number 1: by addition – which is represented
by iterative threading on the “abacus” thread as above, or by doubling, as explained below.

Assuming the sphere is equipped with a normal vector field (a.k.a. framing, and we will
define such a framing later), it makes sense to double the sphere along its framing. This
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:=

Figure 2. The threaded sphere as a movie of a circle and a point in R3.

# = = ∆

Figure 3. “1 + 1 = 2” on the 4D abacus.

operation will be denoted by ∆ . For example, given the outward-pointing normal
vector field, doubling the sphere results in two concentric spheres. In R4 two concentric
spheres can be separated without intersecting each other. E.g, assume the coordinates are
called x, y, z and t, and two concentric spheres lie in the hyperplane {z = 0}. Then one can
continuously move the inner sphere into the hyperplane z = 1, followed by moving it to a
disjoint t-position from the outer sphere and then back to the {z = 0} hyperplane.

Combining this with threading, we see that doubling a threaded sphere is the same as the
connected sum of two threaded spheres, as shown in Figure 3. To simplify notation, we will
denote the threaded sphere by 1, and write 1#1 = ∆ 1.

2.2. w-Foams. In order to introduce the main ingredient Z, the homomorphic expansion,
we need to place the threaded sphere in the more complex space of w-foams. We will briefly
describe this space here and for more detail refer to [BD3, Section 2].

The space of w-foams, denoted w̃TF , is a circuit algebra, as defined in [BD2, Section 2.4]. In
short, circuit algebras are similar to the planar algebras of Jones [J] but without the planarity
requirement for the connection diagrams. For an example of a circuit algebra connection
diagram, see Figure 6. Circuit algebras are also close relatives of modular operads [DHR].
Each generator and relation of w̃TF has a local topological interpretation in terms of certain
ribbon knotted tubes with foam vertices and strings in R4. Note that one dimensional strands
cannot be knotted in R4, however, they can be knotted with two-dimensional tubes. In the
diagrams, two-dimensional tubes will be denoted by thick lines and one dimensional strings
by thin red lines.

With this in mind, we define w̃TF as a circuit algebra given in terms of generators and
relations, and with some extra operations beyond circuit algebra composition. The genera-
tors, relations and operations are explained in detail in Sections 2.2.1 and 2.2.2. The local
topological interpretation of the generators and relations provides much of the intuition for
this paper.

w̃TF = CA

〈
1 , 2 , 3, 4 , 5 , 6 , 7 , 8 , 9︸ ︷︷ ︸

generators

∣∣∣∣∣∣∣∣
R1s , R2, R3,
R4, OC, CP︸ ︷︷ ︸

relations

∣∣∣∣∣∣∣∣ ue︸︷︷︸
extra operation

〉

In [BD3] w̃TF appears in its larger unoriented version (includes a wen and relations describ-
ing its behaviour) and it is equipped with more auxiliary operations (eg punctures, orientation
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= = =

Figure 4. The trivalent vertices of w̃TF .

switches). The expansion Z constructed there is homomorphic with respect to all of the oper-
ations in the appropriate sense. Here we focus only on orientable surfaces and the operations
strictly needed for the Duflo isomorphism – the restriction of the Z of [BD3] is a homomor-
phic expansion for this structure. In the following sections we will provide brief descriptions
of w̃TF , its associated graded space of arrow diagrams, and the homomorphic expansion, to
make this paper more self-contained.

2.2.1. The generators of w̃TF . We begin by discussing the local topological meaning of each
generator shown above. For more details, see [BD2, Sections 4.1.1 and 4.5]

Knotted (more precisely, braided) tubes in R4 can equivalently be thought of as movies
of flying circles in R3. The two crossings – generators 1 and 2 – stand for movies where
two circles trade places as the circle corresponding to the under strand flies through the
circle corresponding to the over strand entering from below. The bulleted end in generator 3
represents a tube “capped off” by a disk, or alternatively the movie where a circle shrinks to
a point and disappears.

Generators 4 and 5 stand for singular “foam vertices”, and will be referred to as the positive
and negative vertex, respectively. The positive vertex represents the movie shown in Figure 4:
the right circle approaches the left circle from below, flies inside it and merges with it. The
negative vertex represents a circle splitting and the inner circle flying out below and to the
right.

The thin red strands denote one dimensional strings in R4, or “flying points in R3”. The
crossings between the two types of strands (generators 6 and 7) represent “points flying through
circles”. For example, generator 6 stands for “the point on the right approaches the circle
on the left from below, flies through the circle and out to the left above it”. This explains why
there are no generators with a thick strand crossing under a thin red strand: a circle cannot
fly through a point.

Generator 8 is a trivalent vertex of 1-dimensional strings in R4. Finally, generator 9 is a
“mixed vertex”, in other words a one-dimensional string attached to the wall of a 2-dimensional
tube. This is shown in Figure 4.

An important notion for later use is the skeleton of a w-foam. We give an intuitive definition
here that is is sufficient for this paper; for a formal definition see [BD2, Section 2.4]. In general,
viewing knotted objects as embeddings of circles, manifolds, graphs, etc, the skeleton is the
embedded object without its embedding. In other words, the skeleton of a knotted object
is obtained by allowing arbitrary crossing changes, or equivalently by replacing all crossings
with “virtual” (or circuit) crossings. For example, the skeleton of an ordinary knot is a circle.
The skeleton of the threaded sphere described above is a sphere and a string. The skeleton
of a classical braid on n strands is an element of the permutation group Sn.

2.2.2. The relations for w̃TF . This section is a quick overview of the relations for w̃TF , which
are described in detail in [BD2, Section 4.5]. The list of relations for w̃TF is {R1s, R2, R3, R4,
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R1s OC

CP CP CP

Figure 5. The relations R1s and OC are shown. CP is explained with broken
surface diagrams and as a movie of flying circles.

=OC

Figure 6. The OC relation written as a circuit algebra relation between two
crossings.

OC, CP}; Figure 5 shows R1s and OC, and explains CP. All relations have local 4-dimensional
topological meaning, this is an instructive exercise to verify. R1s stands for the weak (framed)
version of the Reidemeister 1 move; R2 and R3 are the usual Reidemeister moves; and R4
allows moving a strand over or under a vertex. OC stands for Over-corssings Commute, and
CP for Cap Pullout. All relations should be interpreted in all sensible combinations of strand
types: tube or string, and all orientations.

Note that all relations are circuit algebra relations. For example, the relation OC is under-
stood as a relationship between two specific circuit diagram compositions of and ,
as shown in Figure 6.

The circuit algebra w̃TF is conjectured to be a Reidemeister theory for ribbon knotted tubes
in R4 with caps, singular foam vertices and strings. Here ribbon means that the tubes have
“filling” in R4 with only restricted types of singularities, for details see [BD1, Section 2.2.2].
All the relations represent local topological statements: for example, Reidemeister 2 with a
thin red bottom strand holds because the movie consisting of a point flying in through a circle
and then immediately flying back out is isotopic to the movie in which the point and circle
stay in place. However, it is an open question whether the known relations are sufficient. A
similar Reidemeister theory has been proven for w-braids,which exhibits a simpler structure
than w̃TF : [BH, Proposition 3.3] and [Gol,Sa]. For an explanation of the difficulties that arise
for knots and tangles, see [BD2, Introduction].
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ue ue u

Figure 7. Disc unzip on the left and middle, strand unzip on the right.

2.2.3. The operations on w̃TF . In addition to the circuit algebra structure, w̃TF is equipped
with a set of auxiliary operations. Of these, in this paper we only use disc unzip.

The disc unzip operation ue is defined for a capped strand labeled by e. Using the black-
board framing, ue doubles the capped strand e and then attaches the ends of the doubled
strand to the connecting ones, as shown Figure 7.

Topologically, the blackboard framing of the diagram induces a framing of the corresponding
tubes and discs in R4 via Satoh’s tubing map [BD1, Section 3.1.1] and [Sa]. Briefly, each point
of a (thick black) strand represents a circle in R4 via the tubing map, and the blackboard
framing induces a "companion circle" (not linked with the original circle). A framed tube
in R4 can be understood as a movie of flying circles in R4 with companions. Unzip is the
operation “pushing each circle off of itself slightly in the direction of the companion circles”.
See also [BD2, Section 4.1.3] for details on framings and unzips.

A related operation not strictly necessary for this paper, strand unzip, is defined for strands
which end in two vertices of opposite signs, as shown in the right of Figure 7. For the interested
reader a detailed definition of crossing and vertex signs is in [BD2, Sections 3.4 and 4.1]. Strand
unzip doubles the strand in the direction of the blackboard framing, and connects the ends
of the doubled strands to the corresponding edge strands. Topologically, strand unzip pushes
the tube off in the direction of the blackboard framing, as before.

2.3. Interpreting “1 + 1 = 2” in w-foams. The threaded sphere of Section 2.1 can be
described in w̃TF by the diagram , since a doubly capped tube is in fact a sphere. Recall
that the “4D abacus” interpretation of “1 + 1 = 2” is 1#1 = ∆ 1, where 1 is the threaded
sphere, and ∆ is the doubling of the sphere along a framing.

The connected sum # operation for the threaded sphere is the circuit algebra composition
shown in Figure 8. Doubling strands is realized in w̃TF using the unzip operation. However,
since the unzip operations in w̃TF require an unzipped strand to end in either a vertex and
a cap, or two vertices, we need to define a new sphere unzip operation, which doubles a
twice-capped strand) along the blackboard framing, also shown in Figure 8. In Section 3 we
will need to show that the homomorphic expansion of w̃TF also respects this operation. To
summarize, the topological statement “1 + 1 = 2” expressed in w̃TF is shown in Figure 9.

3. Understanding the Diagramatic Statement

3.1. The associated graded structure Asw. As in [BD3], the structure w̃TF is filtered by
powers of its augmentation ideal and its associated graded structure, denoted Asw, is a space
of arrow diagrams on foam skeleta. The arrows are drawn as black dotted oriented lines,
and the skeleton w-foam elements are drawn with the usual thick black lines and thin red
lines. Just like w̃TF , Asw is a circuit algebra presented in terms of generators and relations
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u

Figure 8. On the left, the circuit connection diagram for the connect sum
operation, or concatenating along the red strings. On the right, the sphere
unzip operation.

Topological Statement

# = u

Figure 9. The topological statement in w-foams: the connected sum of
two threaded spheres along the threads is the same as the sphere unzip of
a threaded sphere.

as follows:

Asw = CA

〈
1 , 2, 3 , 4 , 5 , 6 , 7

∣∣∣∣RI, CP , −→4T , −→V I, TC ∣∣∣∣ ue 〉 .
Generators 1 and 5 are single arrows. A single arrow is a degree 1 element of the associated
graded space and represents the difference of a crossing and a non-crossing. The arrow head
lies on the under (fly-through) strand of the crossing, and the tail lies on the over strand. All
of the other generators of Asw are skeleton features of degree zero. Note that the generators
don’t include any arrow tails on a red string: the topological reason for this is that red
strings never cross over any other strand.1 The relations of Asw are briefly described below,
see [BD2, Section 4.2.1] for more detail.

The RI (Rotation Invariance) relation is a consequence of R1s, and CP is the diagrammatic
analogue of the CP relation for w̃TF . Both are shown in Figure 10. The

−→
4T and

−→
V I relations

are also shown in Figure 10. In both cases the ambiguous strands can be either thick black or
thin red, but must be consistent through the relation. The

−→
V I relation is the diagrammatic

analogue of R4, and 4T has a slightly more complicated topological explanation. The TC
(Tails Commute) relation is a consequence of OC and shown in Figure 11.

This presentation of Asw is intuitive as a mirror of the circuit algebra presentation of w̃TF .
However, for relating Asw to Lie algebras, it is more useful to use the following isomorphic
formulation in terms of w-Jacobi diagrams.

1Alternatively, we could introduce a relation asserting that arrow tails on red strings equal zero. This is
necessary in [BD3] because a ‘puncture’ operation can give rise to a diagram with a tail on a red string, but
not necessary here.
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RI
=

CP
= 0

+ −→
4T
= +

± ± ±
−→
V I
= 0, and ± ± ± −→

V I
= 0

Figure 10. The relations RI, CP ,
−→
4T and

−→
V I. In the

−→
V I relation, signs are

positive when the strand of the arrow ending is oriented towards the vertex,
and negative otherwise.

−−−→
STU1= − −−−→

STU2= − −−−→
STU3=
TC

−→
AS
= −

−−−→
IHX
= −

Figure 11. The relations
−−−→
STU ,

−→
AS and

−−−→
IHX on Aswt.

A w-Jacobi diagram consist of a w̃TF skeleton and ‘arrow graphs’ between the components
of the skeleton. An arrow graph is an oriented uni-trivalent graph, with the following three
properties:

(1) Univalent vertices are attached to the skeleton.
(2) Trivalent vertices are equipped with a cyclic orientation.
(3) The edges are oriented so that every trivalent vertex has two ‘in’ arrows and one ‘out’

arrow. This is referred to as the 2-in-1-out property.
Let Aswt denote the circuit algebra of linear combinations of w-Jacobi diagrams modulo

the relations
−−−→
STU , CP , RI and

−→
V I relations. The

−−−→
STU relation (really three relations) is

shown in Figure 11, with TC (Tails Commute) being a degenerate case. The
−→
AS and

−→
IHX

relations, also shown in Figure 11, are consequences of
−−−→
STU , and so is

−→
4T . Once again,

ambiguous strands can be either thick black or thin red, consistently throughout the relation.
The following theorem is the arrow diagram analogue of a well-known fact about classical
“chord diagrams”:

Theorem 3.1. [BD2, Theorem 3.8] The obvious inclusion Asw → Aswt is a circuit algebra
isomorphism.
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ue


e

 =

e1 e2

+

e1 e2

:=
notation

+

Figure 12. Unzipping the strand labeled e, where e1 and e2 are the two new
strands replacing e.

In light of this we drop the t superscript and write Asw to denote the space of Jacobi dia-
grams. The advantage of Jacobi diagrams is that trivalent vertices satisfy the same properties
as a Lie bracket—this will be made precise using the tensor interpretation map in Section 4.1.

We introduce the following notation: For a w-foam F ∈ w̃TF , the circuit algebra Asw(S(F ))
is the space of Jacobi diagrams with skeleton S(F ), where S(F ) is the skeleton of F as defined
in Section 2.2. Often we will write Asw(F ) to mean Asw(S(F )).

The associated graded operation of the circuit algebra composition in w̃TF is the circuit
algebra composition in Asw. As for the (strand, disc and sphere) unzip operations ue, given a
w-foam F with a choice of a strand e, the associated graded unzip operation ue : Asw(F )→
Asw(ue(F )) maps each arrow ending on e to a sum of two arrows, one ending on each of the
two new strands which replace e. For example, an arrow diagram with k arrows ending on e
– either heads or tails – is mapped to a sum of 2k arrow diagrams. This sum is represented
notationally as shown in Figure 12.

3.2. The Homomorphic Expansion. As proved by the first two authors in [BD2, BD3],
there exists a (group-like) homomorphic expansion Z : w̃TF → Asw. An expansion is a
filtered linear map with the property that the associated graded map grZ : Asw → Asw is
the identity map on Asw. A homomorphic expansion is an expansion that is a circuit algebra
homomorphism and also intertwines each auxiliary operation (here only unzip) of w̃TF with its
arrow diagrammatic counterpart, meaning that the square below commutes. For disc unzip,
this was shown in [BD2,BD3]; for sphere unzip, we will prove it in Lemma 3.4.

Asw Asw

w̃TF w̃TF

ue

ue

Z Z

The map Z sends each generator G to an infinite sum of arrow diagrams on the skeleton
S(G), that is, Z(G) ∈ Asw(S(G)). The values of the crossings and the cap are computed
explicitly in [BD2,BD3]; to refer to them we use the notation shown in Figure 13. In particular,
the Z-value of a crossing of a black strand and a red string is the exponential ea of an arrow
a, to be interpreted as the power series, where an is shown in Figure 13.

To describe the Z-value C of a cap, we need to introduce a special class of arrow diagrams
called wheels. A wheel is an oriented cycle of arrows with a finite number of incoming arrows,
or “spokes”. (The 2-in-1-out property forces that all univalent ends of this arrow graph be
arrow tails, that is, all spokes are incoming.) See Figure 18 for an example of a wheel. Note
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Z

( )
= C Z

( )
=

ea
an :=

... }n

Figure 13. Values of Z on generating w-foams.

Z( )
−→
V I
=

V+

Figure 14. The definition of V+.

that reversing the orientation of an even wheel yields an equivalent arrow diagram via
−→
AS and

TC relations, while reversing the orientation of an odd wheel produces its negative. Hence,
from now on we assume all wheels are oriented clockwise. The value C is an infinite sum of
even wheels:

(3.1) C = exp

( ∞∑
n=1

c2nw2n

)
, where

∞∑
n=1

c2nx
2n =

1

4
log

sinhx/2

x/2
.

In particular, c2 = 1
96 , c4 = − 1

11520 , and c6 = 1
752776 .

Since Z is a circuit algebra homomorphism, given the values of Z on the generators, it
is straightforward to compute Z of any w-foam F : if F is a circuit composition of some
generators {Gi}, then Z(F ) is the same circuit composition of the values Z(Gi).

We are working towards a diagrammatic statement of “1 + 1 = 2”, which depends heavily
on the homomorphicity of Z. We have yet to prove that Z is homomorphic with respect
to the sphere unzip operation, and to achieve this we need to discuss the Z-values of the
vertices in some detail. By definition, Z( ) ∈ Asw( ). Using iterative applications of the
relation

−→
V I, all arrow endings on the vertical strand of can be moved to the bottom

two strands. This induces an isomorphism Asw( ) ∼= Asw( ) [BD2]. Thus, Z( ) can be
viewed as an element of Asw( ) denoted by V+, as shown in Figure 14. The arrow diagram
V− = Z( ) ∈ Asw( ) is defined similarly.

Note that Asw( ) is an algebra2 with multiplication given by vertical concatenation. Let
us recall a useful fact from [BD2]:

Lemma 3.2. In Asw( ), V+ and V− are multiplicative inverses, i.e. V+ · V− = 1 = .

Proof. This follows from the fact that Z is homomorphic with respect to the unzip operation,
as shown in Figure 15. �

The following corollary is a crucial ingredient in proving that Z is also homomorphic with
respect to sphere unzip:

2In fact, a Hopf algebra with coproduct � : Asw( ) → Asw( ) ⊗ Asw( ). The coproduct � of an
arrow diagram is a sum of all possible ways of attaching each of the connected component of the arrow graph
– after removing the skeleton – to one of the tensor factor skeleta. Details on the Hopf algebra structure are
in [BD2, Section 3.2].



RIBBON 2-KNOTS, 1+1=2, AND DUFLO’S THEOREM FOR ARBITRARY LIE ALGEBRAS 11

ueZ

 e

 = ue

 e

V−

V+

 =

V−

V+

Zue

 e

 = Z


 =

Figure 15. Visual proof of Lemma 3.2.

K

gee

D = 0

Figure 16. The “cactus” w-foam K on the left, cactus grafting in the middle.
The “head invariance” property of arrow diagrams on K is shown on the right,
where D denotes any arrow diagram above the arrow head on the skeleton K.

Corollary 3.3. Z( ) = , that is, the Z-value of this w-foam is trivial, a skeleton with no
arrows. �

Lemma 3.4. Any homomorphic expansion Z of w̃TF is also homomorphic with respect to
sphere unzip.

Proof. To prove this we realize the sphere unzip operation as a composition of disc unzips
with another new operation called “cactus grafting”. Let K denote the “cactus” w-foam shown
in Figure 16. If e is a capped strand of a w-foam, the cactus grafting operation ge attaches K
to the capped end of e. This is well-defined: the only relation involving a cap is CP , namely,
the cap can be pulled out from under a strand. The same is true for the cactus, combining
CP with R4 moves. Topologically, cactus grafting is cutting a small disk out of a capped
strand and gluing the resulting boundary circle to the boundary of the cactus K.

The associated graded cactus grafting operation on arrow diagrams – also denoted ge –
simply attaches the skeleton K (without any arrows) at the end of the capped strand e in
place of the cap. This is well-defined: the cap participates only in the CP relation, that is,
an arrow head that is not separated from the cap by another arrow ending is zero. However,
an arrow head on K that is not separated by another arrow ending from the bottom of K
is also zero, as shown in Figure 16; this property is known as the head invariance of arrow
diagrams [BD2, Remark 3.14].

Finally, Corollary 3.3 implies that Z(K) is simply a cap value C at the top of an otherwise
empty skeleton K. Since the value C can be move from the top to the bottom of K using two−→
V I relations, we obtain that for any w-foam F with a capped edge e, Z(ge(F )) = ge(Z(F )),
in other words Z is homomorphic with respect to ge.

Finally, sphere unzip can be written as a composition of one cactus grafting followed by
two disc unzips, hence Z is homomorphic with respect to sphere unzip. �

3.3. The diagrammatic statement. Applying the homomorphic expansion Z to the topo-
logical statement of Section 2.3 gives rise to the following equation:
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Diagramatic Statement

= ea1+a2

u(C)

u(C)

+

ea2

C

C

ea1
C

C

Z
( )

#Z
( )

= uZ
( )

Figure 17. The Diagrammatic Statement of “1 + 1 = 2” in Asw. Since tails
commute, two caps on a strand can be combined into C2, and the two unzipped
caps can be combined as u(C)2 = u(C2).

Z
( )

= Z
( )

#Z
( )

= uZ
( )

Using the notation of Figure 13, we can compute each term of this individually to obtain
the final form of the diagrammatic statement, as shown in Figure 17.

4. Understanding the Tensor Statement

Ultimately we aim to give a proof of the multiplicativity of the Duflo isomorphism, which
is a statement about finite dimensional Lie algebras. From here on, we fix a finite dimensional
Lie algebra g over a field K of characteristic zero. Let Ig denote the double of g, that is, the
semidirect product g∗ o g, where g∗ is taken to be abelian, and g acts on g∗ by the coadjoint
action. In formulae:

Ig = {(ϕ, x) : ϕ ∈ g∗, x ∈ g},

(4.1) [(ϕ1, x1), (ϕ2, x2)] = (x1 · ϕ2 − x2 · ϕ1, [x1, x2]).

We define the tensor interpretation map

T : Aw(↑n)→ (U(Ig)⊗n)∧,

where Aw(↑n) denotes arrow diagrams on n thick black strands, modulo the three
−−−→
STU

relations only3. U(Ig) is the universal enveloping algebra of Ig, and ∧ denotes the degree
completion, where elements of g∗ are defined to be degree 1, and elements of g are degree
zero. We will show that when n = k1 + k2, T descends to a map

T : Asw( k1 k2 )→ (S(g∗)⊗k1g ⊗ U(g)⊗k2)∧.

Here Asw( k1 k2 ) is the space of arrow diagrams on the skeleton of k1 spheres and k2 strings
(see Figure 18 for examples) modulo all three

−−−→
STU relations, as well as CP at both ends of

the capped strands, as in Section 3. Note that the RI relation is vacuous on red strings, and
it follows from the CP relation on the twice-capped strands: short arrows can be commuted
to the cap they point towards, hence they vanish. S(g∗) is the symmetric algebra of the linear

3It would be called Asw(↑n) if we also imposed RI.
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+

Figure 18. An wheel with three spokes in Asw( 1 0), and an element in

Asw( 2 2).

dual of g, and the subscript g denotes co-invariants under the co-adjoint action of g: that is,
the quotient by the image of the co-adjoint action. U(g) is the universal enveloping algebra
of g, and ∧ denotes the degree completion where elements of g∗ are degree one and elements
of g are degree zero, as before.

4.1. The Tensor Intpretation Map. The idea in the construction of T : Aw(↑n) →
(U(Ig)⊗n)∧ is that trivalent arrow vertices “represent” the Lie bracket in g, and the rela-
tions in Asw(↑n) translate to Lie algebra axioms.

Denote the structure tensor of the Lie bracket of g by [, ]g ∈ g∗ ⊗ g∗ ⊗ g. Given a basis
{b1, · · · , bm} for g and the dual basis {b∗1, · · · , b∗m} for g∗, write [bi, bj ] =

∑m
k=1 c

k
ijbk for

structure constants ckij ∈ K. Then

[, ]g =
n∑
i=1

ckij b
∗
i ⊗ b∗j ⊗ bk.

Similarly, let id ∈ g∗ ⊗ g denote the identity tensor, given by id =
∑m

i=1 b
∗
i ⊗ bi.

For an arrow diagram D we first define T (D) in the tensor algebra T (Ig)⊗n as follows, and
as shown in Figure 19:

(1) Place a copy of id ∈ g∗ ⊗ g on every single arrow, with g∗ at the arrow tail, and g at
the arrow head.

(2) Place the structure tensor of the bracket [, ]g on all trivalent arrow vertices, with g∗

components on the incoming arrows and the g component at the outgoing arrow.
(3) Arrows which connect two trivalent vertices now have an element of g∗ meeting an

element of g. Contract these by evaluating the element of g∗ on the element of g to
get a coefficient in K. Multiply the constants together. This is illustrated on examples
in Figures 20 and 21.

(4) What remains is a linear combination of diagrams with elements of g∗ and g along
the strands. Multiplying these in T (Ig) along the orientation of the strands produces
an element in T Ig⊗n.

Given the bases {b1, ..., bm} for g and {b∗1, ..., b∗m} for g∗, a simple way to compute the value
of T on a given diagram D is to some over all ways of labelling each arrow with an index
1, ...,m, form the corresponding product in T (Ig)⊗n taking a factor bi for each arrow tail
labelled i and b∗j for each arrow head labelled j; with the coefficient given by the product of
ctrs for each arrow vertex with incoming arrows labelled r and s and outgoing arrow labelled
t. See Figures 20 and 21 for sample computations of T for two arrow diagrams.

Lemma 4.1. T descends to a well defined map on Aw(↑n)→ (U(Ig)⊗n)∧.
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“id”
g∗ g :=

m∑
i=1

b∗i bi

[, ]g
:=

m∑
i,j,k=1

ckij

b∗i

b∗j

gk

Figure 19. Steps (1) and (2) in computing T .

m∑
e,f,h,i,j,k=1

cfke · c
i
fh · ckij

e

h

j

k

f

i

=
m∑

c,e,f,i,j,k=1

cfke · c
i
fh · ckij · b∗e · b∗h · b∗j ∈ T (Ig)

Figure 20. Example computation of T for a wheel with three spokes.

D

 
m∑

f,i,j,k,l=1

cikf · ckij

j

f

ki

l

 
m∑

f,i,j,k,l=1

cikf · ckij · (b∗fb∗jb∗l ⊗ bl) ∈ T (Ig)⊗ T (Ig)

Figure 21. An example for computing T.

Proof. We need to check that relations in Aw(↑n) are mapped to relations in (U(Ig)⊗n). This
is indeed the case:

−−−→
STU1 and

−−−→
STU2 are mapped to the relations [xi, xj ] = xixj − xjxi, and

[ϕi, xj ] = ϕixj −xjϕi.
−−−→
STU3 = TC is the fact that g∗ is abelian. It is also easy to check that

the T respects gradings, so the completions on both sides agree. �

Proposition 4.2. When k1+k2 = n, T further descends to a well defined map T : Asw( k1 k2 )→(
S(g∗)⊗k1g ⊗ U(g)⊗k2

)∧
.
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Proof. We begin by re-phrasing the statement as a commutative diagram:

A(↑n)
(
U(Ig)⊗k1 ⊗ U(Ig)⊗k2

)∧
Asw( k1 k2 )

(
S(g∗)⊗k1g ⊗ U(g)⊗k2

)∧
T

∃T

The projection on the left is imposing two cap relations on each of the first k1 strands, and
killing all arrow diagrams with any arrow tails on strands k1 + 1 through n. One defines the
bottom horizontal T map in the obvious way: taking any pre-image on the left, and applying
T followed by the quotient on the right. For this to be well-defined, we need to show that any
element in the kernel of the projection on the left is killed by the composition of T with the
projection on the right.

On strands k1 + 1 through n, under the tensor interpretation map T , arrow tails ending
on a given strand translate to elements of g∗ in a product in the corresponding U(Ig) tensor
factor. Hence the quotient map to make the bottom arrow well-defined is to set elements of
g∗ to be zero, resulting in the Ug tensor factors.

On the first k1 strands, the cap relations assert that an arrow head at the very beginning
or the very end of the strand is zero. T assigns elements of g to arrow heads, hence, the
corresponding quotient map on the right is modding out by the multiplication action of g on
U(Ig), both on the left and on the right: denote this by g\U(Ig)/g. We only need to prove,
then, that g\U(Ig)/g ∼= (Sg∗)g.

By the Poincare–Birkhoff–Witt (PBW) theorem, U(Ig) has a linear basis, where each
basis element is of the form (b∗1)

α1 ...(b∗m)αmbβ11 ...b
βm
m , for non-negative integers αi and βi,

i = 1...m. Thus, U(Ig)/g ∼= Sg∗, as basis elements where βi 6= 0 for any i are sent to
zero, and g∗ is abelian. It remains to show that left multiplication by g translates to the
co-adjoint action of g on Sg∗ under this isomorphism. Given a monomial b∗i1 ...b

∗
ir
∈ Sg∗,

where 1 ≤ i1 ≤ i2 ≤ ... ≤ ir ≤ m, and bi ∈ g, we need to write bib∗i1 ...b
∗
ir

in terms of the PBW
basis, that is, we need to commute bi across each of the dual basis elements.

According to the formula (4.1), denoting the coadjoint action of g on ϕ by g · ϕ,
bib
∗
i1 ...b

∗
ir = (bi · b∗i1)...b∗ir + b∗i1(bi · b∗i2)...b∗ir + b∗i1 ...(bi · b

∗
ir) + b∗i1 ...b

∗
irbi = bi · (bib∗i1 ...b

∗
ir).

The second equality holds because last term of the sum in the middle is zero in U(Ig)/g.
Thus, we have shown that g\U(Ig)/g ∼= (Sg∗)g, and completing the proof. �

The following Proposition will play a crucial role later; we present it here as it is based on
a similar principle as the proof above:

Proposition 4.3. The image of T is g-invariant, where g acts via the adjoint action on
the each of the Ug tensor factors (that is, sum over acting on each one). In other words,
T (D) ∈

((
(Sg∗)⊗k1g ⊗ (Ug)⊗k2

)∧)g for any D ∈ Asw( k1 k2 ).

Proof. This follows from the head invariance property of arrow diagrams: the relevant impli-
cation of this fact is shown in Figure 22; the property in general is discussed in [BD2, Remark
3.14]. In short, the sum over all thin red strands of attaching an additional arrow head at the
bottom of the strand gives the same result as the sum over all thin red strands of attaching
the arrow head at the top.

Attach an additional arrow head at the bottom of the i-th red strand of an arrow diagram
D, where the arrow tail lies on an additional strand as in Figure 22; call this new diagram
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D

+

= D

+

Figure 22. The head invariance property in Asw( k1 k2 ).

Di. Compare T (Di) with T (D):

T (Di) =
m∑
j=1

b∗j ⊗ (bj ×i T (D)),

where ×i denotes multiplying on the left in the i-th tensor factor.
Similarly, let Di denote the arrow diagram obtained from D by attaching an arrow head

at the top of the i-th red strand.

T (Di) =

m∑
j=1

b∗j ⊗ (T (D)×i bj),

where multiplication is now on the right. Hence,

T (Di)− T (Di) =
m∑
j=1

b∗j ⊗ (bj ·i T (D)),

where ·i denotes the adjoint action on the i-th Ug tensor factor. Due to the head invariance
property we have

0 =

k2∑
i=1

T (Di)− T (Di) =

m∑
j=1

b∗j ⊗

(
k2∑
i=1

bj ·i T (D)

)
.

The right hand side is only zero if
∑k2

i=1 bj ·i T (D) = 0 for each j = 1...m, which is exactly
the statement of the proposition. �

4.2. The tensor statement. To obtain the tensor statement, we simply apply the map T
to the diagrammatic statement of Figure 17:

Z
( )

#Z
( )

= u2Z
( )

.

Since Z( ) is an element of Asw( ), T (Z( )) =: Υ ∈ (S(g∗)g ⊗ U(g))∧.
The connected sum operation in Asw is concatenation along the red strings. Under the

tensor interpretation map T , this translates to multiplication in U(g), while the S(g∗) com-
ponents remain separate tensor factors. Hence,

T
(
Z( )#Z( )

)
= Υ13Υ23 ∈ (S(g∗)⊗2g ⊗ U(g))∧.

Here Υ13 := φ13(Υ), where φ13(x⊗ y) := x⊗ 1⊗ y, and Υ23 := φ23(Υ), where φ23(x⊗ y) :=
1⊗ x⊗ y.

On the right side, the unzip operation sends an arrow ending on the unzipped strand to
a sum of two arrows ending on either daughter strand. Under the tensor interpretation map
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b∗j
ui

∆

b∗j + b∗j

T T

⊗b∗j⊗ ⊗(b∗j ⊗ 1 + 1⊗ b∗j )⊗

⊗∆b∗j⊗

Figure 23. The tensor interpretation map intertwines unzip with co-
multiplication.

T , this is sent to the Hopf algebra coproduct ∆ of Ŝ(g∗)g given by ∆(ϕ) = ϕ ⊗ 1 + 1 ⊗ ϕ
for primitive elements ϕ ∈ g∗g, as shown in Figure 23. In other words, T ◦ u = ∆ ◦ T , and
therefore

T
(
u2Z

( ))
= (∆⊗ 1)Υ ∈ (S(g∗)⊗2g ⊗ U(g))∧.

In summary, we obtain the Tensor Statement below. Note the similarity with the triangu-
larity equation R13R23 = (∆⊗ 1)R, yet this is not a triangularity equation as S(g)g and Ug
are not a dual pair.

Tensor Statement

Υ13Υ23 = (∆⊗ 1)Υ in (S(g∗)⊗2
g ⊗ U(g))∧

Figure 24. The tensor statement.

5. The Duflo Isomorphism

There is a pairing g∗×g→ K given by the evaluation. This extends to a pairing Sg∗×Sg→
K in the following way. Given a monomial ϕ1 · ... · ϕk ∈ Sg∗ with ϕi ∈ g∗ and a monomial of
the same degree x1 · ... · xk ∈ Sg with xj ∈ g,

(5.1) 〈ϕ1 · ... · ϕk, x1 · ... · xk〉 :=
∑
σ∈Sk

ϕ1(xσ(1)) · ... · ϕk(xσ(k)),

where the sum is over all permutations of the k indices. Monomials pair as zero with any
monomial of a different degree, and the pairing is then extended bilinearly.

Alternatively, given a basis {b1, ..., bm} of g and dual basis {b∗1, ..., b∗m} of g∗, Sg and Sg∗
are spanned linearly by monomials in the basis elements bi and b∗j respectively. The monomial
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(b∗1)
α1 ·...·(b∗m)αm pairs as zero with every monomial in the basis vectors {bi} except bα1

1 ·...·bαm
m ,

and

(5.2) ((b∗1)
α1 · ... · (b∗m)αm)

(
bα1
1 · ... · b

αm
m

)
=

m∏
i=1

αi!

This descends to a pairing (Sg∗)g × (Sg)g → K. For Π ∈ (Sg∗)g and P ∈ (Sg)g we
will denote the value of this pairing by by 〈Π, P 〉. Finally, one can extend to a pairing
(Sg∗)⊗ng × ((Sg)g)⊗n → K by simply multiplying the pairings of tensor factors. This satisfies
the equality

(5.3) 〈Π, PQ〉 = 〈∆Π, P ⊗Q〉

for any P,Q ∈ (Sg)g, where ∆ is the co-product on (Sg∗)g induced by the co-product on Sg∗.
Define the Duflo map

D : S(g)g → U(g)g

by pairing with the first tensor factor of Υ ∈ (S(g∗)g ⊗ U(g))∧, and by an abuse of notation,
denote this by D(P ) = 〈Υ, P 〉. Note that although Υ lives in a degree completion, it is finite
in each degree, and so only finitely many terms of Υ have non-zero pairings with any given
P ∈ S(g)g. Hence, D(P ) ∈ U(g). The fact that D(P ) is g-invariant is a direct consequence
of Proposition 4.3.

Theorem 5.1. The map D is an algebra homomorphism.

Proof. By definition, D is linear. The multiplicativity of D, on the other hand, is a direct
consequence of the Tensor Statement. Let P,Q ∈ S(g)g, then

D(PQ) = 〈Υ, PQ〉 1
= 〈(∆⊗ 1)Υ, P ⊗Q〉 2

= 〈Υ13Υ23, P ⊗Q〉 3
= D(P )D(Q).

Here Equality 1 is Equation (5.3) above, and the second pairing is applied in the first two
tensor factors of (∆⊗1)Υ. Equality 2 is the Tensor Statement, and the pairing is still applied
to the first two tensor factors of the first argument. Equality 3 is simply the associativity of
product. �

Proposition 5.2. The map D is an algebra isomorphism.

Proof. In light of Theorem 5.1 we only need to prove that D is bijective. Recall that Ug
is filtered by word length (aka the PBW filtration), and the PBW Theorem states that the
associated graded algebra is isomorphic to Sg. We claim that D is a filtered map; this is true
by inspection of Υ as below. We then prove that grD is the identity, hence D is bijective.

Recall that Z( ) consists of a value C2 on the twice-capped strand followed by an expo-
nential ea of an arrow a from the capped startand to the red string, as shown in Figure 17.
Hence,

T (Z( )) = (T (C2)⊗ 1) · T (ea).

Since T (a) = ι, where ι ∈ g∗ ⊗ g denotes the structure tensor of the identity automorphism
of g, we have T (ea) = eι. Recall from Formula (3.1) that T (C2) = 1 + higher degree terms.

Now let P ∈ S(g)g be homogeneous of degree d. Observe that D(P ) lives in filtered degree
at most d, hence D is a filtered map. In particular the only term of D(P ) that doesn’t belong
to filtered degree d− 1 arises from pairing with 1

d! ι
d.

Hence, the associated graded map grD(P ) = gr(P 7→ 〈eι, P 〉), and by formula (5.1) this is
the identity of Sg, completing the proof. �
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