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EVERYTHING AROUND si5, IS DPG. HOORAY!

DROR BAR-NATAN AND ROLAND VAN DER VEEN

ABSTRACT. We construct sl5,, a certain “lossless approximation” of sly, and show that
“everything that matters” around its universal enveloping algebra and its quantization,
namely the products, the co-products, the R-matrix, and other essential ingredients, can be
described in terms of a certain category DPG of “Docile Perturbed Gaussian differential

operators”.

Those essential ingredients are what one needs in order to construct powerful knot in-
variants with good algebraic properties. Also, as we show, DPG is “easy” in the sense of
computational complexity. Hence we get (and implement and compute) powerful poly-time-

computatble knot invariants with favourable algebraic properties. Hooray!

Similar constructions ought to exist for all semi-simple Lie algebras, but we do not pursue

this here.

CONTENTS

1. Plan of the Paper

1.1.  Acknowledgement

2. The Category DPG

2.1.  Motivation, conventions, generating functions
2.2. Some Real Life Examples

2.3.  Gaussian Differential Operators

2.4. A Baby DPG and the Statement of the main DPG Theorem

2.5.  Algebra by means of Partial Differential Equations
2.6. Full DPG

3. sls,, CU, and QU

3.1. Definitions and Basic Properties.

3.2.  Motivation for sl5,, CU, and QU

3.3. Proofs.

4. Everything Around sl5, is DPG

5. Tangles and Knots and Algebraic Knot Theory

6. Computational Appendices

6.1. Computational Verification of Theorem 2.3.4, (i)
References

7. Scratch Work — will be removed before posting
7.1.  An co-dimensional DD Theorem, take 1.

Date: First edition Not Yet, 2020, this edition Feb. 22, 2024.
2010 Mathematics Subject Classification. 57M25.

TN DN DN DN

13
15
15
16
19
19
19
19
19
19
20
21
21

Key words and phrases. knots, tangles, knot polynomials, Lie algebras, Lie bialgebras, quantization, 2-

parameter quantum groups, Drinfel’d double.
This work was partially supported by NSERC grant RGPIN-2018-04350.
1



DRAFT! See http://drorbn.net/DPG/

2 DROR BAR-NATAN AND ROLAND VAN DER VEEN
7.2.  An co-dimensional DD Theorem, take 2. 21
7.3. A Naming Question 22
7.4. Iterated Gaussian Integration. 22

1. PLAN OF THE PAPER

There is little we want to say by means of an introduction beyond what we said already
in the abstract (please read it again). Instead, here’s the plan:

In Section 2 MORE.

In Section 3 MORE.

Sections 2 and 3 completely commute and can be read in either order.

MORE.

1.1. Acknowledgement. We wish to thank M. Pugh for Footnote 15.

2. THE CATEGORY DPG

2.1. Motivation, conventions, generating functions. This section may seem like an
awful way to start a topology paper — it’s all about formula-based technicalities. Here are
its redeeming features (beyond its usefulness for the later parts of the paper):

e Did you know that quadratic forms (aka “Gaussians”) form a category in a natural
way? (Theorem 2.3.4).

e Did you know that Feynman diagrams arise in pure algebra in a completely natural
way?

Motivation 2.1.1. The “PBW Principle” says that many algebras U are isomorphic, as
vector spaces, to polynomial rings (hence as algebras they are “polynomial rings with funny
multiplications”). Many times one needs to understand maps between algebras. Primar-
ily, the algebra’s own structure: the multiplication map m: U ® U — U, perhaps a co-
multiplication A: U — U ® U, and more. Sometimes one may care about specific special
elements in U or some tensor power thereof; say, R € U ® U = Hom(U®? — U®?). So
we need to understand the category of maps between algebras and their tensor powers, and
hence, by PBW, the category of maps between polynomial rings. This category is way too
big — one can encode an infinite amount of information into a map between polynomial
rings (no matter the base fields) — and so no finite computer can fully store a general such
map. Hence we develop a theory of “maps between polynomial rings that can be described
using finite formulas (of a certain kind)” and we are lucky that the maps we care about
later in this paper can indeed be described by formulas of that kind. Those maps/formulas
are “Docile Perturbed Gaussian differential operators”, and they make a category, DPG,
which is the main object of study for this section.

Convention 2.1.2. Throughout this paper we will use lower case Latin letters such as z,
y, b, a, x, and t to denote the generators of polynomial rings. Each such generator comes
with a dual (whose purpose will be explained shortly), and the dual will always be denoted
by the corresponding Greek letter: z* = (, y* =n, b* = 3, a* = a, 2" =, and t* = 7. If
C' is a finite set, we will denote by zc = {z.}.c the set of variables denoted by the letter
z with an index ¢ € C; likewise there’s yco, x¢, etc. We will regard zo sometimes as a set
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and sometimes as a column vector, as appropriate. We extend duality to indexed variables:
28 = (o = {2 = (}eec. We will sometimes treat (¢ (or n¢, etc) as a row vector.

Next, we establish a bijection

G: Hom(Q[za] — Q[z5]) — Qlzs][¢] (2.1.3)

between linear maps from polynomials in variables z4 to polynomials in variables zp (A and
B are finite sets) and a certain class of power series in the output variables and the duals
of the input variables (more precisely, power series in the Greek variables corresponding to
the inputs, with coefficients that are polynomials in the Latin variables corresponding to the
outputs).

Definition 2.1.4. Let A and B be finite sets and let L: Q[z4] — Q[zp] be linear. Let
L = G(L), the generating function of L, be defined as follows:

CAroin
L=G(L):= Z n—f:L(zA) € Q[z5][¢.]- (2.1.5)
neNA '
Here N denotes the non-negative integers, n = (nq)eea is a multi-index, (% = [[,c4 (0
and likewise 2% = [ [,c4 20, and n! := [[,.4 n.!. Extending L without changing its name

to an operator L: Q[z4][C.] — Q[z5][C.] by treating the (4’s as scalars, and recalling the
definition of the exponential function, we find that (2.1.5) can also be written as

L=G(L)=L(e4=),
where Ca - 24 = >} .4 CaZa-

Proposition 2.1.6. G: Hom(Q[z4] — Q[zr]) — Q[z5][¢.] is a bijection. If L € Q|zg][(.]
and p € Q[z4] then
G HL)(P) = P(06)L(Cas )|, = L0z, 20)P(2)., =g

[
Example 2.1.7. Consider L;: Q[z] — Q[z] for ¢ = 1,2,3,4, where L;(p) = p is the identity,
Ly(p) = p(z + 1) is the shift, Ly(p) = p’ is differentiation, and Ly(p) = §;p is definite
integration. Then

G(Li) =€, G(L) =MD, G(Ly) =¢e®,  and  G(Ly) = (6 —1)/C.

A few further examples of generating functions, closer in spirit to the ones we care for the

most in this paper, are in Section 2.2, right below.

Linear maps between polynomial rings can be composed, and it is useful to know how
their corresponding generating functions compose®:

Proposition 2.1.8. Let A, B, and C be finite sets, and let L € Hom(Q[z4] — Q[z5]) and
M € Hom(Q|[zg] — Q[zc]). Then, with b standing for all elements of B,
GLIM) = (G(L)]2, G0D) = (G(M)|g-2.,G(L))

(2.1.9)

2,=0"
L]

!Below and throughout we use “” for left-to-right composition: LM = M o L.
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Said differently, G is an isomorphism of categories from the category of polynomial rings
in finitely many generators to the category & whose objects are finite sets with morphisms
morg(A — B) = Q[z5][Ca] and compositions

LM = (£|ZM%M)Q_O = (Mg 0, £) (2.1.10)

2,=0"
where £ € morg(A — B) and M € morg(B — C).

Comment 2.1.11. We call the operation in (2.1.10) “contraction of the variable pairs ({, 25)
forbe B”.

Comment 2.1.12. There is an easily-provable third version for the composition formula (2.1.10),
which treats £ and M and Greek and Latin letters more symmetrically:

LIM = ex%% (L M) (2.1.13)

2p=Cp=0"

where the indices b run through the set B. Here L - M stands for the ordinary product of
power series Q[25][Ca] ® Qlzc][¢s] — Qlzaus][Cpoc]”

Comment 2.1.14. If you are familiar with formal Gaussian integration, especially as it is
used in physics and especially in perturbation theory where one allows themselve to pretend
that integrals always converge (e.g. [Po]), then there is another easily verified form for the
composition formula (see also [Ab]):

LIM = 5000 (L. M)|, o J e~ o5 (£ . M) [ | dsdss (2.1.15)

beB

Much of this paper can be re-written in terms of the above formula and Gaussian inte-
gration, yet we prefer to use this fact only for inspiration®. There is simply nothing to gain:
everything one can do with integration we can also do directly with (2.1.13), a bit more
simply. Yet there is a lesson to learn from (2.1.15): compositions may have simple formulas
(and indeed they do) if £ and M are themselves Gaussians or perturbed Gaussians, for then
the integral in (2.1.15) would be Gaussian or perturbed Gaussian, and these are known to

be computable.

Discussion 2.1.16. Later in this paper we will also want to consider power series in the mold
of 2 € Q[z] or (1 —2)~!. The generating function formalism does not extend to power series
in the most naive way: the space Hom (Q[z4] — Q[zg]) is not isomorphic to some space of
“generating functions” such as Q[(a, zp]]. Indeed, Q[z4] is of uncountable dimension over
Q, and Hom (Q[z4] — Q[zg]) is quite wild*. One standard way to get around this is to
introduce a “small” parameter i and insist that it be present in power series, as in €' and
(1 — hz)~!. But first, a discussion and a convention.

2Strictly speaking this is valid only if there are no name clashes, namely if An B = B~ C = . That’s a
non-issue — if needed the labels in B can be temporarily renamed before the formula is applied.

3The constant of proportionality in Equation (2.1.15) has some 27 factors in it. We don’t really want dreadful
transcendental numbers in an algebra paper.

4 One may be tempted to restrict attention in Hom (Q[z4] — Q[zg]) to continuous homomorphisms (relative
to the power series topology; see e.g. [Kas, Chapter XVI]). That’s wrong in our context — many of the
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In analysis the identity (1 — hz)™' = > A"z" holds true even if |z| isn’t small, provided
h is small enough®. In algebra, if we want to enrich Q[z] so as to allow such identities® we
need to do two things:

e Tensor multiply Q[z] with Q[%] to get Q[z, ], so as to allow coefficient depending
on h.

e Complete relative to the ii-adic topology so as to get Q[z][A], where series like Y| A™z"
make sense.

MORE. 77?7 Add somewhere a comment that exponentials make sense in both Q[z] and
Q[z][A], yet Hom(Q[z] — Q[z]) is of uncountable dimension while Homgqpy(Q[2][2] —
Q[z][A]) is countable.

MORE. This whole discussion is still murky. Does God really care about h?

Convention 2.1.17 (and subtle point). We slightly abuse notation and use Q; as a symbol
for both steps:
Qﬁ[m7 Y, Z] = Q[’I’ Y, Z] [[h]]

Note that Qy is not a ring but a name for an operator: tensor with Q[#] and complete relative
to the h-adic topology. In particular, Q isn’t Q[A] and Qy[z] isn’t Q[R][z]. Indeed, €"* and
(1 — hz)~! are both members of Q;[z] but not of Q[A][z].

Yet we further abuse notation, and when Qj, is on its own, we will regard it as the ring
Q[A]. So “w € Q4" means that w is a power series in /& with rational coefficients.

With all this said, in much of this paper one can read Qj to simply mean “Q, also with a
small parameter i”, with only a minor disloyalty to precision.

Everything said so far work over Qj; as well as over Q. The same bijection as in (2.1.3),

G: Homg, (Qs[2a] — Qxulzs]) — Qulza][¢],

with the same definition (2.1.5) and the same composition law (2.1.9).
MORE. A continuity clause is missing.

Convention 2.1.18. We also automatically complete spaces relative to the Greek letters «,
B, m 7,1, & and ¢, and also when they come with subscripts. So if a and b are elements of
some algebra U then e19+52% always makes sense, and should be regarded as an element of

Uﬂa1752]]'

2.2. Some Real Life Examples. Let us briefly meet a few generating functions of the type
that we will care about the most in this paper. But first,

Convention 2.2.1. Throughout this paper we often put labels on tensor factors in a tensor
product instead of ordering them; hence we often write U®4, where U is a vector space and
A is a finite set, instead of U®", where n is a natural number’. If U has a prescribed unit
1eU and if z € U and i € A, we write z; for “z placed in tensor factor i (with 1 in all other
tensor factors)”. Thus for example, we often write z; + 25 for z®1+1®z. If ¥: U4 _, y®B
is a map, we often emphasize its domain and range by writing “¢4”.

homomorphisms we care about are simply not continuous relative to the power series topology. See an
example in Footnote 8.

"How small? |h| must be smaller than |z|~!, so & must be determined after z.

6And yet without making z small, that is, without switching to Q[z], which our formalism can’t handle.
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We start with some examples from the realm of commutative polynomials. Here U = Q|z]
denotes the ring of commutative polynomials in a variable z.

Example 2.2.2. Let m: UQU — U be the multiplication of polynomials. With the language
of Convention 2.2.1, we choose labels i, j, k and write m;: Q[z;, z;] ~ U; @ U; — Uy ~ Q[z4].
But now m}’ is given by z;, z; — 2, and so

g(m?’) — m;‘gj(egzﬁch) — elGi+G)zn
Note that Q(m?j) is a Gaussian — the exponential of a quadratic expression.

Example 2.2.3. Similarly, there is a coproduct A: U — UQU, better written as A;k, given
by z; = z; + 2. We have

g( ;k) _ A(eCiZi) — @Gizi+zk)
Again, this is a Gaussian expression.

Example 2.2.4. A bit silly but nevertheless useful is the relabelling map a;-: U, — U,
which is merely the identity map U — U, albeit with a change-of-label for the unique tensor
factor that appears. We have

g(“;) = Uj‘(egzi) = %%, (A Gaussian!)

Example 2.2.5. There is an inner product P: U ® U — Q given by (z", 2™) = d,,,n!, and
by a quick computation we have

G(PY) = e%%. (A Gaussian!)

Note that there are no Latin letters in the above expression, because it is the generating
function of a morphism whose target space is a polynomial ring on 0 variables.

Example 2.2.6. On a finite dimensional vector space V' an inner product P would have an
inverse R € V ®V such that R;;/P* = of (with o like in Example 2.2.4). We cannot have
that here because U is infinite-dimensional. We come close with R;; = e"% e Q,U®},
which satisfies R;;/P* = k9% where h9° is the operator defined by ii8(2") = h"2". We
then have

G(R;;) = e (A Gaussian!)

Note that there are no Greek letters in the above expression, because it is the generating
function of a morphism whose domain space is a polynomial ring on 0 variables.

Our next few examples are minimally-non-commutative having to do first with the Heisen-
berg algebra H and then with the unique non-commutative 2D Lie algebra a. But first,

Convention 2.2.7. In support of the PBW principle (Motivation 2.1.1) we will often con-
sider both commutative and non-commutative algebras generated by the same set of genera-
tors. In such cases we will use ordinary italics for the generators regarded within commuta-
tive algebras, yet boldface letters for the same generators regarded within non-commutative
algebras. The following definition is an example.

"These conventions only make sense in strict monoidal categories. They are consistent with the “identity”
world view as opposed to the “geography” view; see [BN].
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Definition 2.2.8. Let H denote the Heisenberg algebra, the free associative algebra with
generators p and x modulo the “canonical commutation relation” [p,x] = 1. The “p before
x” PBW ordering map (or “normal ordering”, as physicists would call it) O: Q[p,x] — H
defined by p™a" — p™x" is a vector space isomorphism of a (commutative) polynomial
algebra with the (non-commutative) algebra H.

Example 2.2.9. Let him be the multiplication map of H, turned into a map between poly-
nomial rings by using O to identify H with Q[p, z]; namely, let hm;’ be the composition

0;®0; mt o1
Qlps, i, pj, ;] — H; ®H; > Hi, —— Q[pk, z],

where m: H® H — H is the (non-commutative) multiplication map of H. Then

g(hmﬁj) = @& (M)t (Gt )Tk (a Gaussian!), (2.2.10)

for indeed, using the Weyl form of the canonical commutation relation,
et¥e™ = g ¢TemPetx (in H[7, &]; see Convention 2.1.18), (2.2.11)
we have
g(hmg) _ eﬂipi+§idfi+7rjpj+€jxj//oi ® Oj//m;;j//o];l — @TiPigfiXigT;P; e&jxj//mzj//olzl
_ eﬂipkeﬁixkeﬂ'jpkegjxk//ol;l — e_giﬂ'je(“i+7rj)pke(§i+£j)xk//olzl = g &imjH(mitm)pe+ (& &)z
Note that as in Example 2.2.2, g(m/) = e(mi+m)pe+(&+&)2% 5o the only “contribution” of the
non-commutativity of Am is the term —&;m; in (2.2.10).

Our last example for this section is split between a definition, a proposition, two proofs,
and a discussion.

Definition 2.2.12. Let € be a parameter, let a. be the 2D Lie algebra with generators a
and x and relation [a, x| = ex, and let A. = U(a,) be the universal enveloping algebra of a..
Let O: Q[a, x] — A be the “a before x” ordering map given by a™z" — a™x" (by PBW, it
is a vector space isomorphism). Let amgk be the composition

0;®0; me, o,!

Q[aiaxiaajvmj] - Ae;i®Ae;j Ae;k

Q[ak7 xk];
where m?k is the multiplication map of A..

Proposition 2.2.13.

g(angk) — oxp (s + 0)ag + (€79 + &)y, (nearly Gaussian, see>

Discussion 2.2.15

Proof 1. We first need a Weyl-style exponentiated relation (cf. (2.2.11)). Start with xa =
(a — e)x,? iterate to get xa" = (a — €)"x, sum over n with coefficients < to get xe®® =
e*(@=9)x = g®e~x  iterate again to get x"€%® = e*2(e~°*)"x", and sum again with coeffi-

cients % to get the exponentiated relation e%*e*® = g22g® “"¢x,

8 In continuation of Footnote 4: We have just shown that am(z®a™) = (a—€)"x = (—€)™x + higher powers.
But z ® a™ — 0 while (—¢€)"x - 0, so am is not continuous.



DRAFT! See http://drorbn.net/DPG/

8 DROR BAR-NATAN AND ROLAND VAN DER VEEN
Now proceed as in Example 2.2.9:
Gam,) = £S5 0, O, i O — ek 6t% i 07
— eaiake&xkeajakeﬁjxk//ogl (kiY) e(ai+aj)ake(e_eafi%j)Xk//O’;l — plaitaj)ap+(7 &G+ )z
(2.2.14)
]
Proof 2. We reprove the key equality of Equation (2.2.14), e®i2gfiXg®2gl* = glaitas)ag(e“&i+&)x,

Let p be the 2-dimensional representation of a. given by p(a) = (8 8) and p(x) =

0 0
of group-like elements in (the Greek-letter completion of) A.%; so it is enough to prove that
eaip(a)efip(x)eajp(a)efjp(x) — e(ai+aj)p(a)e(eieagi‘i’éj)p(x)' ThlS we dO by brute force matrix expo-
nentiation (see also [BDV, Gam.nb]):

e 0 01 .
pa: (0 0); PX = (0 e);exp:Matr‘lexp;
Simplify[ exp[a; pa].exp[£; px].exp[aj pal .exp[&; pX] =

exp[ (aj + aj) pa] .exp[ (e-eaj Ei+ §j) DX] ]

True L]

Discussion 2.2.15. The exponent of (](amgk) in itself has an exponential term in it (e7)

1 : e . . .
(O ) The represenattion p is faithful on a. so it extends to a faithful representation

hence G(am/,) is not a Gaussian in {«;, a;, §;, &, ax, 7x}, and hence some of the techniques
that we introduce in later sections, to compose Gaussian generating functions, appear to
break. We have two ways around this, we need both of them below, and in fact, one reason
we included Proposition 2.2.13 is to forewarn that these two ways are needed:

(1) If € is considered as “small” we can expand relative to e and find

. (fe)ma/m
Q(am?;k) = exp ((Oéi + aj)ay, + (& + &)y + Z ijzl’k>
m=>=1 ’
This is a prime example of a “perturbed Gaussian”, and the lesson to take is that we
will need to look beyond Gaussians and at perturbation theory.

(2) Even if € = 1, G(am}’) is a Gaussian in the variables {{;,&;,x)} if the variables
{ai, a;,a;} are held fixed, so contractions involving ¢’s and z’s create no problems.
As for contractions of a’a and a’s, Q(amfj) is nearly Gaussian in {o, a;,a;} for
fixed {&;, &;, x1}: the offending term is the term e~*§;z;. That term is a manageable
perturbation. It is a bit hard to summarize what “manageable” means beyond saying
“whatever is subject to the techniques of Section 2.5”. Yet in short, the manageability
here stems from the fact that the quadratic term (o, + oj)ay is “bipartite”, involving
only aa terms but no aa’s or aa’s, while the perturbation term e~% &z, involves
only variables from one side of the partition: only the a’s.

9That’s an algebraic version of the fact that faithful representations of a Lie algebra are also faithful on a
neighborhood of the identity element of the corresponding Lie group.
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The lesson to take is that sometimes we will need to use Gaussian techniques twice,
relative to to different sets of variables, while holding the variables from the other
set fixed.

2.3. Gaussian Differential Operators. In the examples we care about (see Motivation 2.1.1
and Section 2.2) the generating functions turn out to be perturbed Gaussians, whose per-
turbations are in some sense “docile”!?. Hence we seek to define a category DPG of docile
perturbed Gaussian generating functions, with “differential operator” compositions as in
Proposition ?7?. We start with the unperturbed version, GDO:

Definition 2.3.1. GDO is the category with objects finite sets and, if A and B are finite,
with mor(A — B) the set of “Gaussians in (4 U 25”:

mor(A — B) = {we®},
where w € Qy is a scalar and where @) is a “small” quadratic expression in (4 U zp with

coefficients in Q. To define “small” and the composition law, we decompose quadratics in
(4 U zp into a Greek-Latin part E, and Greek-Greek part F', and a Latin-Latin part G:

1 1
Q= Z EijGiz; + B Z Fi;Giéy + B Z Gijziz;.
i€A,jeB 1,JEA 1,jJEB
With this, “small” means that G must be a multiple of #.!* Also, we define the composition
of we?! € mor(A — B) and wye?? to be we?, with

E = E\(I - F,G) 'Es, F=F+EFI-GF)'EL
G = G2 + EgGl([ - F2G1>71E2, W = WiWs det([ — FQGl)il/Q,

where (E, F,G) and (E;, F;,G;) are the Greco-Roman decompositions of ¢ and of @Q); as
above. Finally, the identity morphism in mor(A — A) is declared to be €544,

(2.3.2)

Comment 2.3.3. The formulas in Definition 2.3.1 may appear unfriendly. But appearances
are deceiving. Note that the rank of the space of quadratics in a certain set of variables is
in itself quadratic in the number of variables, and quadratics grow very slowly relative to
exponentials. Hence the storage and time requirements to store and compute with elements
of GDO are much milder than those for many other computations in quantum algebra,
which tend to be exponential.

Theorem 2.3.4. (i) GDO is indeed a category (the composition law is associative, the
identity morphisms are identity morphisms).
(ii) The explicit composition law of (2.3.2) agrees with the “differential operator” one of (2.1.9).

Proof. Part (i) can be verified by explicit matrix computations. It can also be implemented
and tested, and seeing that we are committed to computability, we do that in Appendix 6.1.
Finally, part (i) follows from part (ii) and the fact that the composition law of (2.1.9) is
obviously associative. Hence we concentrate on proving (ii). We do it in two ways: pictorial,

100r perhaps, we care about those examples precisely because their generating functions are docile perturbed
Gaussians.

HThe formulas below make sense either if the G terms are always small or if the F' terms are always small.
Mostly, in the applications G will be small and so we made the condition “G is small” be a part of the
definition of GDO. Rarely we will encounter cases where F' is small but G isn’t. See Discussion ?77.
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right below, for those who are familiar with diagrammatic algebra, and pure algebraic, on
page ?77. O

Pictorial proof of Theorem 2.5.4, (it). This proof assumes familiarity with 4 o B
the kind of diagrammatics that occurs with Feynman diagrams in quantum ?
field theory and/or with exponentials of connected diagrams as they occur ~
in, say, [BGRT]. Pictorially, we view morphisms in morgpo(4A — B) as in ) Q C
the picture on the right: we put the Greek input variables corresponding to Zp o
A on the left, the Latin output variable corresponding to B on the right, grg‘;g """"" latin
we indicate the scalar coefficient w at the top, and we use the bulk of the

picture to indicate () and its Greco-Roman decomposition, with an obvious “Greek facing”
placement of F', “Latin facing” placement of G, and “across the divide” placement of E.
Note that () is exponentiated and that exponentials are “reservoirs of multiple copies” e* =
1+ 2+ 2x/2+ zxx/6+ .... We emphasize this by drawing E, F', and G as having multiple
shadows.

With this language, a composition asin (2.1.9) 4 w B B w € A w C

of a pair of morphisms as on the right is inter- — — —
preted as “sum over all possible contractions of = g = g = g
Latin-side ends in €9 with Greek-side ends in j o) C / j Q2 C - j Q C
2 (provided their labels, which are elements of 7 ;> B G F oo
Bu agree)” . Thus to ﬁgure OUtv say, the £ part Of gr(;e.l; .......... 1 ;‘;in gr(;e.l; .......... 1 ;‘;in gr(;e.l; .......... 1 ;‘éin

the output, we need to figure out all the ways to
travel from A to C' across the composition of €9t and e?2 by carrying out such contractions.

The most obvious way to travel across is the

direct route: contract E; with FE5. This con- E E,

tributes a term proportional to E; Es to the out- +

put E. Another possibility is to travel along F,, g " + + -
then Fy, then G, then Ey, producing a term pro- 2

portional to Ey FoG1 Es. Another possibility is to @

take the FyG; detour twice, producing a term
proportional to E;(FyG1)*Es. In general, and with proper accounting of the combinatorial
factors (it turns out that all proportionality factors are 1), we get

ee}
E =) E\(FyG) By = E\(I — B,Gy) ' By,
r=0
where the last equality was obtained by summing a geometric series, and where convergence
is assured by the “smallness” condition on G in Definition 2.3.1.
Similar reasonings justify the formulas for F' and for G.

Yet there is one further contribution to e?!/e?? coming from closed G cycles
as on the right (but of an arbitrary length r). This contribution is a scalar that
modifies wiws, and it is exp (372 5= tr(F2G1)") = exp(—3 trlog(1—FG1)) = det(1—
F,G1)™'/2, justifying the last part of Equation (2.3.2). Note that in the last formula
we used the familiar quantum field theory dictum to “divide each diagram by the
order of its symmetry group” to get the 1/2r factor, and that throughout the proof we
regarded only connected diagrams and exponentiated the result, as per the dictum “the

logarithm of the partition function is generated by connected diagrams”.
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MORE. Add a section about piggyback Gaussians.

2.4. A Baby DPG and the Statement of the main DPG Theorem. In this section we
introduce a “baby” version of DPG, in which the most interesting features of the “mature”
versions are present, yet some inconveniences regarding weights are censored.

Definition 2.4.1. Let €2 be some ring of “scalars” and let € be a formal parameter. Like
GDO, let DPG, be the category with objects finite sets and, if A and B are finite, with
mor(A — B) the set of “docile perturbed Gaussians in (4 U zp”:

mor(A — B) = {we®""},

where w and @) are e-independent and otherwise as in Definition 2.3.1, and where P is a
power series in € of the form P = ] _, P® ek and where each P®*) is a polynomial in (4 U 25
satisfying the “docility condition”:

deg P®) < 2k + 2.

The composition law of DPGy is “be compatible with (2.1.9)” (so this definition becomes
complete only following the discussion of Feynman diagrams below, or in Section 2.5).

Comment 2.4.2. If we mod out by e+ for some ky > 0, or in other words, restrict
our attention to DPG;, “up to €”, then the rank of the space of docile polynomials is
polynomial in the number of variables (cf. Comment 2.3.3). Hence storing and manipulating
docile polynomials has a chance of being computationally cheap; later we will see that this
is indeed the case.

We now seek to understand compositions. With the same diagrammatic language as
before, we seek to determine w, @) = (E, F,G) and P, so that the following would hold,
where composition is “all possible contractions”:

A w1 B Bf w2 C A w C
Ero L By
ol el
j N ) YN = (2.4.3)
1 Gri: 3 2
greek latin greek latin greek latin

Looking only at the e-independent part, it is clear that the composition law for w and for @)
is the same as for GDO (2.3.2) (so DPG is an “extension” of GDO). We just have to find
P=%, P®er as a function of Q5 and P ».

Well, P*) must get k factors of ¢ and it can only get them from P, and P,. So P®) is
a sum of diagrams that have at most k vertices'?. These vertices can be connected to each
other (including self-connections), or to the outside, either directly, or by travelling along
E 5 lines, or by travelling along F»G, or G1F; cycles as before. The latter cycles produce
geometric series that sum to either (I — FyG;)™! or (I — G Fy)~!. We arrive at the following
theorem, which we state in a slightly informal manner as a more rigorous treatment follows
in Section 2.5:

127 ess than k if a single vertex brings along more than one factor of e. Namely, if it comes from Pl(lf 2,
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Theorem 2.4.4. In a composition as in (2.4.3) the term P%® in P
1s the sum of all connected Feynman diagrams as on the right, each
divided by the order of its automorphism group, and in which the ver-
tices are determined by Py, and Py and in which there are five types of
propagators (all sampled on the right):

(1) A Py-to-P, propagator which equals (I — FoG1)™!.

(2) A Py-to-P; propagator which equals (I — FoG1) 1 F.

(3) A Py-to-Py propagator which equals G1(I — G Fy)™t.

(4) A Greek-to-Py propagator which equals Ey(I — FyGy)™t.

(5) A Pi-to-Latin propagator which equals (I — FoG) ' E.

The figure here depicts a contribution to P . In general the valencies of vertices may be
higher and self-contractions of two edges coming out of the same verter are allowed. ]

Proposition 2.4.5. DPGy, as defined in Definition 2.4.1 and with composition as in the
above theorem, is indeed a category. Namely, with notation as in Equation (2.4.3) and with
P as in the theorem, if P, and Py are docile then so is P.

Proof. Consider a diagram contributing to P that has m vertices vy, ..., v,,. Each v; comes
from either P; or P, and brings along some power k; of €, so the diagram overall contributes
a term 7' in which the power of € is k = >, k;. We need to show that the degree of T in
the Greek and Latin variables satisfies deg T < 2k + 2. Indeed, by the docility of P, and P;
each v; contributes at most 2k; + 2 to that degree. Also, the diagram is connected!® so it
has at least m — 1 edges, and each one contracts to variables, so each one reduces the overall
degree by 2. So degT < (3", 2k; +2) —2(m — 1) = 2k + 2. O

MORE. Add a “formula” version and a demo.

The full DPG category needed in this paper is merely a “garnished” version of DP Gy,
in which every variable has a “weight”, and some weight restriction apply. We now turn to
its formal definition, which we give in a slightly informal manner.

Context 2.4.6. Let n > 0 be a positive integer, and let us work in some universe of Latin
and Greek variables in which every variable z (or ¢) has a weight wt(z) (or wt(¢)) with
0 < wt(z) <n (and 0 < wt(¢) < n), so that if z and ¢ are dual then wt(z) + wt(¢) = n.
Every monomial in our universe now has a weight, the sum of the weights of all the variables
appearing in it, counted with multiplicity. The variables A and € are special and do not carry
a weight.

Example 2.4.7. In the main context of this paper, that of Section 4, we will have n = 2 and
we will have variables y;, b;, a;, and x; (where 7 can run in some sets of labels), and their duals
ni, Bi, i, and &;, with weights wt(y;, b;, a;, ;) = (1,0,2,1) and wt(n;, 5;, i, &) = (1,2,0,1).
In this context, wt(a$?afy3, hle’) =62-0+8-2+3-1+1-0+7-0=19.

Definition 2.4.8. A power series D = Y D®¢eF is called “docile” if for every k every
monomial appearing in D) has weight less than n(k 4 1) (with a slight imprecision, this is
wt(D®) < n(k + 1)). The same D is called “G,-docile” if it is docile and in addition the
following “Condition G,,” holds:

3Da liegt der Hund begraben. Had we used we®P instead of we@t¥ for the morphisms of DPG we’'d
have had no connectedness here and the docility bound would have been deg P*) < 4k, leading to slower
computations.
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Condition G,. For any weight-n variable z, 0,D® is affine-linear in the
weight-0 variables.

Comment 2.4.9. Note that if D is docile then wt(D®) < n so if also wt(z) = n, then
wt(0,D®) = 0, so 0,D® depends only on the weight 0 variables. Condition G, says that
this dependence is particularly simple.

Example 2.4.10. The generating function of multiplication in the algebra A,
exp ((oi + oy)ay, + (€79 + &)wy)

(see Proposition 2.2.13), is Gi-docile, with variable weights as in Example 2.4.7: wt(a, z, «,§) =
(2,1,0,1).

Possible improvement: DPG are things which are e-weight-docile, hA-Latin-docile, and
have no Greek-only pairs. Can the last condition also be phrased as a docility condition?

MORE: State up front a full EDDO/DPG theorem.

The diagrammatic discussion of this section can be continued and extended to the full
DPG, category of Section 2.6 but we prefer the more solid grounds of pure algebra as in
the next section, Section 2.5.

2.5. Algebra by means of Partial Differential Equations. Much as we love intuitive
graphical reasonings such as in the previous sections, we also like the more solid grounds of
algebra. Hence we repeat the content of Sections 2.3 and 2.4 in a purely algebraic language
(as it turns out, it is the language of partial differential equations, though they are only used
with power series and hence we remain in pure algebra).

Recall from Comment 2.1.12 that in order to compute compositions of generating functions
we need to evaluate contractions like eX %% (L - ./\/l)‘ This inspires the following

slightly more general definition:
Definition 2.5.1. Let B be a finite set, let F' be a B x B matrix, and let £ be a power

series in variables that include the variable zg. Set the “partial contraction” and the “full
contraction” of £ using F' to be

[F: &g = e7 Lisen Fuf%i% € and (F: &p = [F:&]p|
Note 2.5.2. To ensure convergence one must assume some “smallness” condition on either
F or £. We defer this to a later point.

Note 2.5.3. In the above definition,

e & replaces the product £ - M of (2.1.13),
e we restrict to a single “type” of variables zp instead of the zp U (g of (2.1.13) (so B
here is “twice” the B of (2.1.13)),

2p=Cp=0"

zp—0 "

e instead of a pairing matrix of the form ((]) é) as in (2.1.13), we allow a general

matrix F.
This added generality will become beneficial soon.

Note 2.5.4. The computations of [F: -]p and of (F': -)p are equivalent by “soft” means:
[F: -] clearly determines (F': -)p, and we also have [F: E]|p = <F: 5]Zb_>Zb+zl/)>

)
zp—2p

where zj; is a new set of variables indexed by B. The full contraction (F': -)p is used
in (2.1.13), yet the partial contraction [F': -|p is easier to manipulate as below.
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Let A be a formal variable and let Z, := [AF': £]g. Then Z, (and hence all we care about
in this section) is determined by the following initial value problem, a heat equation:

1
Zo =& and a)\Z)\ = 5 Z Ejazisz)\. (255)
i,jEB
Yet we like to write generating functions as exponentials', and hence the following proposi-

tion:

Proposition 2.5.6. With E =log€& and Z) = log Z\ Equation (2.5.5) becomes

1
Zy=E and  0Zy= D Fij (0ey 20+ (0:,2))(0-,22)) - (2.5.7)
i,j€B
Proof. Simply substitute Z, = €%* into (2.5.5) and carry out the differentiations. O

Example 2.5.8. With B = {1} a singleton, so we have just one variable z = z;, with F’
the 1 x 1 matrix (1), with ¢ a small scalar (namely, a commuting extra variable and with all
work carried out over Q[t]), and with & = e2*°, let us compute
[(1): €] =e2®e2”  and  {(1): &) = [(1): €]|sm0 = e2%e27|,_,.
With Proposition 2.5.6 in mind, we set Z := log[(\): £] and Equation (2.5.7) becomes
t 1
Zy = 52’2 and Dy = 5 (é’EZA + (GZZ,\)2) )

The differential operator Z — 02Z + (0,Z)? maps the space of linear combinations of 1 and
of 22 into itself, and so our solution must be of the form é -1+ £2* where f and g are power
series in t and \. Substituting this back into the equation, we get the system

f|/\:0 = OJ 0)\f =g,
g|>\:0 = t’ a)\g = 927

whose solution is g = %5 and f = log 2. Thus Z, = log \/ll_ﬁ + ﬁé, and so

1 t 22
1): &l = ex%es®® — % — Lz
[(1): &] = exTe2 Vit P 1=t

and
1

N

MORE: An exercise about the relationship with integration.

A sometimes-useful alternative to (2.5.7) is to allow F' to be implicitly dependent on A
in an arbitrary (differentiable) manner with the condition F'|,_, = 0 and to suppress the X
subscript in Z,. The resulting equation is

1
Ihoo=E and 07 = D (0aFy) (0=, 2 + (0:,2)(0-,Z)) - (2.5.7")

i,j€B

1&2 t

((1): &) = ez%e2”|

2.5.8

!The equations become non-linear, but as we will see later, their solutions lie in smaller spaces, allowing for
more efficient manipulations.
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We call Equation (2.5.7) (and its variant Equation (2.5.77)) “the synthesis equation”, as it
governs how the “vertices” in E merge and contract to synthesize larger and larger connected
diagrams, as in the interpretation below.'®

Interpretation 2.5.9. For the initiated, we cannot resist includ-

ing a Feynman-diagram interpretation of Equation (2.5.7). With E O A B
“the vertices” and F' “the contraction tensor” (roughly, “the prop- ¢ AF
agator”), Zy = (AF: eF) is the sum of all Feynman diagrams that " separating AF
can be made with vertices in £ and contractions as dictated by F,
with each contraction multiplied by an additional factor of A. Then
Z\ = log Z, is the same, except restricting to connected Feynman diagrams. And then 0,2,
picks out one contraction in Z,. If it is “separating”, it contributes an F-weighted product
of two connected diagrams — the term (0., Z»)(0:;Z»). If it not separating, it can be seen

" non-separating A\F

to contribute the 621.2]. Z term. See the picture on the right. 2.5.9
. ieB Yi%i _ ar e Fijviys .
Lemma 1. {(F': £ eXicn vz >B = 2 Zijen Fiavivs <F 5’z3—>23+FyB>B and
. ieB YiZi _ ai S ien Fiyivi+Yien vizi .
[F_geZ Byz]B_e2Z.]B iYiYi+ i p Yiz [F g|ZB_)ZB+FyB]B

el (L NI b
Lemma 2. With convergences left to the reader,

<F: £ &3 Tijen Gisiz >B — det(1—GF)" " (F(1—GF)™": €),,
and

[F: £ &3 e G] — det(1 — GF) 22 Zisen(@U-FG) Niyziz
B
([F1=GF):£&],)

F/2 _ F/2
€ C 7% € E jeG/Q
Je

Lemma 1 Lemma 2

ZB—>(I—FG)71,ZB ’

MORE.
2.6. Full DPG. MORE.

3. sl§

2+

CU, AND QU

For a minimalistic reading of this paper it is enough to know the definitions and some basic
propeties of the Lie algebra sl5, and its associated associative algebras CU, and QU. Hence
we start this section by declaring these algebras by fiat and listing some of their properties,

150, Pugh told us that Equation (2.5.7) is a variant of “Burger’s equation”, and that it’s relationship with
the heat equation (2.5.5) is a variant of the “Cole-Hopf transformation”.
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postponing some of their proofs to Section 3.3. In Section 3.2 we explain the motivation
behind sl5, and find that it extends to arbitrary semi-simple Lie algebras.

In anticipation of Section 77, in which we show that everything that matters around sl5
is DPG, we emphasize the first occurrence of every object in this section that is later shown
to be DPG with a lollipop symbol ®  Within the context of the current section the lollipops
are purely motivational.

3.1. Definitions and Basic Properties. Our ground ring throughout this section is Qle],
the ring of polynomials with rational coefficients over a formal parameter e. Quantum algebra
people should note that € is distinct from A.

Definition 3.1.1. Let si5, be the Lie algebra L{y,b,a,x) with generators {y,b,a,z} and
with commutation relations

la,z] =z, [by]=—ey, [a,0] =0, [a,y]=—y, [bx]=cx, [z,y]=0+eca. (3.1.2)

Remark 3.1.3. It is easy to verify that ¢ := b — ea is central in sl5,, and that if € is
invertible’® then sls, splits as a direct sum: sl5, = sly @ (t), explaining its name. (Though
we will mostly care about the vicinity of € = 0, and at ¢ = 0'7 our algebra is not a direct
sum).

Definition 3.1.4. Let CU := U(sl5, ) be the universal enveloping algebra of sl5,. Namely,
CU is the associative algebra A(y,b,a,x) generated by the same {y, b, a,z}, subject to the
same relations as in (3.1.2). We denote the multiplication map of CU with Cm CURCU —
CU (or, with the language of Convention 2.2.1 and Example 2.2.2, with ‘m}’: CU,; ® CU; —
CUy) ® CUisa Hopf algebra in the standard way; namely, with its given associative algebra
structure and with unit “n: Q - CU @, counit ¢: CU — Q'8 @, antipode °S: CU — CU @,
and coproduct ‘A: CU — CU ® CU ® given as follows:

NA) = A1,
1,9,b,a,2) = (1,0,0,0,0
(b 0,2) = (1,0.0,0,0) .
(y7b a JZ) ( —-a, —l‘)7
‘A(y,b,a,z) = (y®1+1®y,b®1+1®b a®1+1®a,z®1+1Q«).
With the language of Convention 2.2.1, Equations (3.1.5) become:
Cni: Q - CU®{Z}7 ( ) =\ 117
e’ CU®M - Q, °e'(1i, i, bi, ai, ;) = (1,0,0,0,0), (3.16)
cSi = CSE: CU®{Z} - CU®{Z}7 CS (ylab’uala Z) = ( iy Z'7 — 0y, _xi)a -
AL CUBY — Uik Ny (i, bi, ai, i) = (y] + yk,b + b, a5 + ag, 25 + ).

16K, g., if the ring of scalars is extended to Q(e) via sls, — Q(e) ®q[e] Sl5 -

I"Evaluation at € = ¢y € Q makes sense via sl5, — (Q[e]/(e — €)) ®q[e] 8l54, a Lie algebra over Q.

18We use \epsilon (€) for a perturbation parameter and \varepsilon (¢) for counits. There’s rarely a
reason for confusion.
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Definition 3.1.7. Let QU, a “quantization” of CU, be the associative algebra A{y, b, a, x)[h]
over the ring Q[A] modulo to the relations

1-AB

PR
where ¢ := e, A .= e and B := e ™. We denote the multiplication map of QU with
Im: QU ® QU — QU @ We also set

i(\) = ?
9 (14, v, by, ag, 1) = (1 0,0,0,0) ®
) = @

®

[CL, l’] =T, [b7 y] = —€y, [CL, b] = Oa [(l, y] =Y, [b7 .T] = €T, Ty — qyxr =

. (3.1.8)
( iy_bia_aiy_A' l’z)

(3

S (y’L7 bl? a’l? xl
qA;;g(?/z‘, bi,ai,xi) = (y; + Bjym bj + by, aj + ar, x; + Ajzy)
The following claim can be verified easily by explicit computations:

Claim 3.1.9. With the above operations and relative to the h-adic topology, QU is a complete
topological™ Hopf algebra over the ring Q[e][A]. O

Definition 3.1.10. Let R ® be the element of QU ® QU? given by the following formula:

R = Z y"b |(hx) , alternatively R;; = Z bi'b: ha] ('hx]) eB;, ®A;,

m,n=0 m,n=0

where [n],! = [1]4[2], - - [n], and [k], = q:T_ll =1+q+q¢*+...+¢" ! (recall that ¢ = e").

Proposition 3.1.11 (proof in Section 3.3). R is an R-matriz. Namely, it has the following
properties: (This algebra section can be self contained, yet when we can, we can’t resist
including knot-theoretic interpretations, prefived with “KT”. Pure algebraists can ignore.)

Rygf 1Ay = (RiaRas) [ “m3! KT: Alz/\ 12/\ /;/ /\3
Riaf 'A%, = (RioRys) ) tmit KT: ® /\ 1/2\\4 /\2 /\3

R i
=l

V)
(R12R63R45//(qm16 qm§4 qm ) (R23R14R56)//(qm%5 qm§6 qmg4) KT: (
1

("ALRsq) [ (*my* m3t) = (Ryz 1Ag,))(“my* 9m3?)

23

9Most people can safely ignore the “topological” language: it just means that everything can be a power
series in A, and only reasonable things are done to such series.
20Tensor products are completed relative to the fi-adic topology with no further mention.



DRAFT! See http://drorbn.net/DPG/

18 DROR BAR-NATAN AND ROLAND VAN DER VEEN

We have finished listing the atomic pieces we need for the purpose of knot theory. Yet
these pieces in themselves are assembled from even lower level pieces — perhaps “quarks” —
and we need to introduce those as they are necessary for both the proof of Proposition 3.1.11
and for the proofs in Section 4 that all the lollipopped items above are indeed in DPG. Here
we go:

Definition 3.1.12. Let a be the 2-dimensional Lie algebra L{a,x)/[a,z] = x) and let
A = U(a)[h] be the h-adic completed universal enveloping algebra of the two dimensional
Lie algebra with generators a and z and with the same bracket as in Definition 3.1.7. We
turn A into a complete topological Hopf algebra with the obvious definitions for *m, *c, and

“n (all ®), and with the definitions for “S and “A (both @) induced from (3.1.8). Namely,
aSi A;y L) = | —0Qy, _Az_lx% )
o (e, = ) (3.1.13)
Al (ag, ;) = (a; + ap, x5 + Ajag).

Let A’ be the subalgebra of A generated by ha and by hz?'. It is easy to check that A’ is a
sub-Hopf-algebra of A.

Definition 3.1.14. Similarly let B = U(L{y,b)/[b,y] = —ey)[h] be the h-adic completed
universal enveloping algebra of the two dimensional Lie algebra with generators y and b and
with the same bracket as in Definition 3.1.7. We turn B into a complete topological Hopf

algebra with the obvious definitions for ®m, %, and °n (all @), with S ® taken to be the

inverse of 1S (but only on y and b) and with °A ® taken to be the opposite of A (but only
on y and b). Namely,

b -1

Si(yi, bi) = (—y:B; ", =b;),

b A ) = ) (3.1.15)
Ajk(yiu b;) = (Bry; + Yk, bj + b).

Clearly, R € B®A’. We claim that it has an inverse, a pairing I € (A")* ® B* ?.

Proposition 3.1.16. There is a unique pairing 11 € (A')* ® B* satisfying

where o¥: By — B; ® is the identity map (more preciely, the factor renaming map) and
where “FD” stands for “Flow Diagram(s)”, a rather standard graphical language for repre-
senting compositions of tensors (e.g. [ES, Lecture 12]) which nevertheless seems not to have
a standard name.

defined on the generators by
[ha, by = Wk, gy = 1, Tha,y) = ha, by = 0,

MORE.
MORE.

21Elements of A are infinite series Y] w, " where w,, € U(a). Elements of A’ are such series in which each
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3.2. Motivation for si5,, CU, and QU. MORE.

3.3. Proofs. MORE.

4. EVERYTHING AROUND sl5, 1S DPG
MORE.

5. TANGLES AND KNOTS AND ALGEBRAIC KNOT THEORY
MORE.

6. COMPUTATIONAL APPENDICES

We believe in implementing as much as possible. Actually, we hardly believe ourselves
unless we implement.
All code in these appendices is written in Mathematica [Wol.

6.1. Computational Verification of Theorem 2.3.4, (i). We test that the composition
law of GDO is indeed associative, by defining it general and verifying associativity on
random (and hence likely generic) morphisms. First, we define the composition law of two
morphisms. The program first determines E;, F;, and G; from Q; (i = 1,2) by taking partial
derivatives, and then outputs the scalar w and quadratic @), with equations (2.3.2) converted
nearly literally into code (see also [BDV, GDOCompositions.nb]):

My o5 [@wl_,Q1_1// Mg o [w2_,0Q2 ] := Module[{§A, zC, E1, F1, G1, E2, F2, G2, I},
EA = Table[&;, {i, A}]; zC = Table[z;, {i, C}]; I = IdentityMatrixeLengthes;
El = Table[d,,, 01, {i, A}, {J, B}]; E2=Table[oc . 02, {i, B}, {i, C}];

F1 = Table[agi,gjm, {i, A}, {3, A}]; F2= Table[agi’ngZ, {i, B}, {i, B}];
Gl = Table[d,,,,,01, {i, B}, {j, B}]; G2 = Table[d;,,. 02, {i, C}, {J, C}];

Expand /@MA_,c[a/l w2Det[I-F2.G1]17Y2, rcA.El.Inverse[I - F2.G1].E2.zC

1 :
+ = EA. (F1+E1.F2.Inverse[I - G1.F2].E1).CA +
2

1 '
—2C. (G2 + E2 .Gl.Inverse[I - F2.G1].E2) .zC] ]
2

Next we implement “random morphisms” (RM) by picking their quadratic parts to have
small random integer coefficients. We also set My, My, and M3 to be random morphisms in
mor({1,2} — {1,2,3}), mor({1, 2,3} — {1,2,3}), and mor({1, 2,3} — {1,2}), respectively:

@ RM, L5 :=Module[{vs = Table[&;, {i, A}] UTable[z:, {i, B}1},
n M,,z[1, Sum[RandomInteger[{-3, 3}] vivj, {vi, vs}, {v]j, vs}111;
{M1 = RM(1,2},1,2,3}» M2 = RM1,2,3y,(1,2,3}» M3 = RM(q,2,3y,(1,2;} // Column

wy, 18 a (non-commutative) polynomial in ¢ and z of degree at most n. So using language similar to the
language of Section 2, A’ is the “docile” subspace of A.



DRAFT! See http://drorbn.net/DPG/

20 DROR BAR-NATAN AND ROLAND VAN DER VEEN

M{l)z}—wl,zﬁ}[l: ~224+42y2y+25 -2723-22;25+

- 2Z§+421§1+3Zz§1+223§1+621§2+Zz§2+523§2—2§1§2—§§]

M{1,2,3H{1,2)3}[1, 212,+322-2123+52223-23+22701-22,81+82-52,C +
32,8,+5238,-3816,+285-52183-22,83-42383-C8183-2085C3+ 83

M1,2,35(1,2) |1, ~23 +4212,-323+52, 81 -2, Gy +

2034221 8,-42,8,+281 82+ E3+42183-22 83+ 8183+ 2835

Just to get an appreciation of what compositions look like, we compute (M, )/Ms)//Ms:

(29) (M1 // M2) // M3

M {_ 1 _6526189z§+48875352122_388391323_25831921§1 )
- AT ess1e2° 1310204 655102 1310204 327551
27628912, C, 82608732 733132z, C, 8671952,C, 4672070, C, 1189699 C2
327551 2620408 9358 93586 46793 187172

Finally, we verify that composition is associative:

(°) (M1 // M2) //M3) = (M1 // (M2 // M3))
Tr‘ue

The last True above is an in-practice proof of Theorem 2.3.4, (i).
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7. SCRATCH WORK — WILL BE REMOVED BEFORE POSTING

7.1. An wo-dimensional DD Theorem, take 1. Suppose A = U(a) and B = U(b) are Hopf
algebras with their native products and with aS, aA, bS, bA, etc. Suppose (-, -»: b®a — Q
is a pairing such that:

e Compatibility of [], and aA etc.

e Non degeneracy.

Then

(1) {-,-) extends uniquely to a non-degenerate pairing B® A — Q such that m and A are
compatible.

(2) D =B®A is a Hopf algebra with the DD formulas and A — D and B — D are Hopf
morphisms.

(3) If b; and a; are dual bases of B and A relative to our pairing, then R = ) bga; satisfies
the quasi-triangularity axioms.

7.2. An oco-dimensional DD Theorem, take 2. Step 1. Everybody knows that if H is
a finite dimensional Hopf algebra then D = H*® is a quasi-triangular Hopf algebra, with R,
m, A, S given by the following formulas. ..

Step 2. If A and B are Hopf algebras over a ring {2 with a Hopf pairing P: AQ B — ()
and R e B® A contracts P to the identity, the same conclusion holds for D = B® A.

Step 3. Over Q = Q[Ah] let A = U(a)[A], A = (ha) = A, and B = U(b), with P: AQB —
be given by (ha,b) = (hx,y) =1, and let R =, y"b™ ® (ha)™(hz)"/m![n],!. Then we're
in the situation of Step 2, with A = A" and B = B, and hence D’ = BQA' is a quasi-triangular
Hopf algebra.

Step 4. All the formulas extend )-linearly to D = B ® A and hence all identities hold
there too.
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7.3. A Naming Question. The following was posted on Facebook on May 10, 2021:

A naming question follows.

Physicists (and some mathematicians) know how
to integrate Gaussians multiplied by polynomials,
and they do it often, especially when they think
about “perturbation theory”.

There are two types of Gaussians: the “one type
of variables” kind, which looks like ezTA‘”, and
the “dual variables” kind, which looks like e By,
With the first type, we study §., dz e Arp(x)
where p is a polynomial. With the second type we
study §q.., dzdy e By g (x,y), where f is a polyno-
mial. But for the second type, the answer is 0
unless deg, f = deg, f, so in fact we can extend
to the case where f is a polynomial in (say) x yet
is allowed to be a power series in y.

Question. What is the second type of Gaussians
called? “Polarized Gaussians”? “Bipartite Gaus-
sians”? Is there a name for the fact that pertur-
bations in the second case vanish if not balanced?
A name or a precedent for the (trivial) fact that f
can be a power series in one of its sets of variables?
Mathematicians, please don’t complain about
convergence. Add conditions if you must, or think
that I'm really imitating some QFT-like context
in which convergence is not an issue.

7.4. Iterated Gaussian Integration. We wish to compute the formal (2m+n)-dimensional

near-Gaussian integral I, = §e”da dbdz, where

L= )\”aibj + §qkl(bj)xkxl +a'a; + B'b; + gkxka

and where 7,7 € m and k,[ € n.
Method 1. First compute the ab-integral.

1 . . .
JeLda db = e&"ox exp (§qkl((9gj)xkxl) fexp ()\”aibj + o'a; + B’bi) da db

— ef"* exp (ﬁqkl(ﬁﬁj)xkxo exp (—Aya'5) fexp ()\”(ai + i ) (b + Njri )) da db

: 1 o
— det()) e exp (iqkl(aﬁj)xkxl) exp (—Aija' )

1 4 o
— det())'e*" " exp <§qkl(—)\ijaz)5€ku‘€z) exp (—Aia'B)

oo 1 :
= det(X) "' exp (—Aja'B) exp (iqkl(_)\i]’@l>$k$l + kak>
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Seeking a Precedent — Two-Stage Gaussian In-
tegration? (Posted at https://mathoverflow.net/
questions/395934).

Sometimes, by iteration, linear algebra can be used to solve
non-linear equations. For example, consider the system

Ax =a B(z)y = b(z),

where a is a vector with scalar entries, A is a matrix with
scalar entries, b(x) is a vector whose entries are functions
of z, and B(x) is a matrix whose entries are functions of
x. This system can be solved by first solving Ax = b, then
substituting the solution into the second equation By = b,
and then solving the second equation. The system can also
be solved by first solving By = b over the ring of functions
of x, and then solving the first equation.

Similarly, formal* Gaussian integration techniques can
sometimes be used iteratively to compute the ezact inte-
grals of non-Gaussian integrands. Here’s a 3D example in
the variables a, b, x; it is easy to raise this example to higher
dimensions by replacing scalars with vectors and matrices.
Let L = \ab + %q(b)x2 + aa + Bb + £x, where all the letters
represent scalars except for ¢(b) which is a function of b.
We wish to compute [ = SeLda dbdx. This is not a Gauss-
ian integral because the ¢(b)z? term is not quadratic in the
integration variables.

Yet first computing the ab integral we get

I(z) = JeLda db = e8ea(@3)7*/2 f grabteatbda db

Q_Wefaﬁ/)\Jréerq(fa//\)zQ/Q
3 .
Thus I(x) is a Gaussian with respect to x, so we can (for-

mally) compute

_ QTWeazeq(am?/zeaﬁ/A _

I = J[(x)dx — ﬂe—aﬁ/k—q(—a/k)*%?@
M/ q(—a/A)

We could have arrived at the same result by first computing
the x integral as a formal Gaussian over the ring of functions
of b and then computing the ab integral.

Question. Is there a precedent for this procedure? A
name? Is there a place where people routinely iterate Gauss-
ian integration to integrate non-Gaussians?

*Meaning, applying standard formulas without worrying about con-
vergence. Add conditions if you must, or think that I’'m really imitat-
ing some QFT-like context in which convergence is not an issue.
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