- I've never understood "resolution of singularities".
- I don't understand the Koszul condition.
- I don't yet appreciate infinity-algebras.
- I don't really understand Poisson structures: Why do they automatically arise from action principles? Why do they necessarily emerge in computing path integrals? Why should I care about their deformation quantizations?
- I don't understand Tamarkin's work on formality.
- Spectral sequences never became me.
- I don't understand homotopy theory, loop spaces, spectra, etc.
- I don't understand minimal models. Books on rational homotopy theory: Félix-Helperin-Thomas, Griffiths-Morgan.
- I don't understand thermal physics - energy, entropy, enthalpy, and all that. Such basic things these are that it is really embarrassing that I don't understand the constraints my air-conditioner is bound by.
— From Feynman's Lectures on Physics: • "equal volumes of gases, at the same pressure and temperature, contain the same number of molecules"; $N_{0}=6.022 \times 10^{23}$ as in (1 mole) $=12 \mathrm{~g}$ of ${ }^{12} C$. • $P=F / A$. • $d W=-P d V$. • $P V=\frac{2}{3} N\left\langle\frac{1}{2} m v^{2}\right\rangle=$ $\frac{2}{3} U(\ldots=N k T)$. \bullet With $\gamma-1=\frac{2}{3}, P V^{\gamma}=C$. • In gas mixtures, $\frac{1}{2} m_{1} v_{1}^{2}=\frac{1}{2} m_{2} v_{2}^{2}$ (messy!). $\bullet \frac{1}{2} m v^{2}=: \frac{3}{2} k T$, with $k=1.38 \times 10^{-23}$ $J /$ degree $(J=$ joule $=$ newton metre $=$ watt second $)$.
- From Bamberg-Sternberg: - First law of thermodynamics: $\alpha+\omega=d U$, with α : heat 1-form, ω : work 1-form, U : internal energy. • Second law of thermodynamics: $\alpha=T d S$, with T : temperature, S : entropy.
- From Schroeder: • $1 \mathrm{cal}=10^{-3}$ food calorie $:=4.186 \mathrm{~J} \sim$ heat to raise 1 g of water by $1^{\circ} \mathrm{C}$.
- See also Lieb-Yngvason.
- I don't understand supersymmetry.
- I don't understand renormalization theory. Minor point: it would be great if I could present the renormalization of associators/vertices as a special case.
- I don't understand the Mostow rigidity theorem.
- I'm not as comfortable with special relativity as I want to be.
- I don't really understand general relativity.
- I don't know how to put figures in IATEX efficiently.
- I don't fully understand the h-cobordism theorem. Perhaps follow Milnor's lecture notes?
Def. An h-cobordism is a cobordism in which the boundary inclusions are deformation retracts.
Thm. In Diff, PL, or Top, a simply-connected h-cobordism between simply-connected ($n \geq 5$)-manifolds is trivial.
- I haven't internalized the distinction between continuous, smooth, and triangulated.
- I don't really understand Faddeev-Popov and/or BRST.
- I don't understand the Batalin-Vilkovisky formalism.
— Mnev's example. "Space of fields" $M=R_{t x y}^{3} \times S_{z}^{1}$; "classical action" $S_{c l}:=\frac{1}{2} t^{2}$; "Gauge symmetry" $E:=\operatorname{span}\left(\partial_{y}, \partial_{x}+t y \partial_{z}\right)$, integrable on $E L=[t=0]$ surface but not on $M, S_{c l}$ is invariant.
M / E is not T_{2} and $\int_{M / E} e^{-S}$ makes no sense.
BV space of fields $F=T^{*}[-1]\left(\mathbb{R}^{2}[1] \times M\right)$ with coords $c_{1,2}$ (ghost number 1), t, x, y, z (g.n. 0), $t^{\dagger}, x^{\dagger}, y^{\dagger}, z^{\dagger}$ (g.n. -1) and $c_{1,2}^{\dagger}$ (g.n. $-2)$. The BV action is $S=\frac{1}{2} t^{2}+c_{1} y^{\dagger}+c_{2}\left(x^{\dagger}+t y z^{\dagger}\right)+c_{1} c_{2} t^{\dagger} z^{\dagger}$; satisfies QME \& consistent with $S_{c l}$ and E.
Gauge fixing Lagrangian $L=\left[x=y=t^{\dagger}=z^{\dagger}=c_{1,2}^{\dagger}=0\right] \subset F$ gives $\quad \int_{L} e^{-S}=\int d t d z d c_{1} d c_{2} d x^{\dagger} d y^{\dagger} e^{-S_{c l}} c_{1} c_{2} x^{\dagger} y^{\dagger}=\sqrt{2 \pi} T$. - Losev: For $\omega \in \Omega^{n-1}\left(M^{n}\right), \quad \int_{[f=0]} \omega=\int_{T M \oplus \mathbb{R}_{\| R}^{I I I}} \omega e^{-d(f \lambda)}$. - Further: old paper by Schwarz; arXiv:0812.0464 by Albert, Bleile, Fröhlich; notes by Kazhdan; thesis by Gwilliam; notes by Ens.
- I still don't understand the BF TQFT. From CattaneoRossi's arXiv:math-ph/0210037 Wilson Surfaces: $A \in \Omega^{1}\left(\mathbb{R}^{4}, \mathfrak{g}\right)$ a connection, $B \in \Omega^{2}\left(\mathbb{R}^{4}, \mathfrak{g}^{*}\right), \quad S(A, B):=\int_{\mathbb{R}^{4}}\left\langle B, F_{A}\right\rangle$. $\mathcal{G}:=\exp \Omega^{0}\left(\mathbb{R}^{4}, \mathfrak{g}\right)$ is (u-)gauge transformations, $(g, \sigma) \in \tilde{\mathcal{G}}:=$ $\mathcal{G} \ltimes \Omega^{1}\left(\mathbb{R}^{4}, \mathfrak{g}^{*}\right)$ acts by

$$
A \mapsto A^{g} \quad B \mapsto B^{(g, \sigma)}:=\operatorname{Ad}_{g^{-1}}^{*} B+d_{A^{g}} \sigma .
$$

With $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}, \xi \in \Omega^{0}\left(\mathbb{R}^{2}, \mathfrak{g}\right), \beta \in \Omega^{1}\left(\mathbb{R}^{2}, \mathfrak{g}^{*}\right)$, set

$$
O(A, B, f):=\int \mathcal{D} \xi \mathcal{D} \beta \exp \left(\frac{i}{\hbar} \int_{\mathbb{R}^{2}}\left\langle\xi, d_{f^{*} A} \beta+f^{*} B\right\rangle\right)
$$

- I forgot too much of what I used to know about Lie theory. From Humphreys: Weyl's formula: For $\lambda \in \Lambda^{+}$,

$$
c h_{\lambda} * \sum_{\sigma \in \mathcal{W}}(-)^{\sigma} \epsilon_{\sigma \delta}=\sum_{\sigma \in \mathcal{W}}(-)^{\sigma} \epsilon_{\sigma(\lambda+\delta)} .
$$

- I know nothing about θ functions.
- I don't understand Witten's exact solution of Chern-Simons theory (what he understood in 1988).
- I'm uncomfortable with quantum groups. Is there a diagrammatic perspective? On a philosophical level, quantum groups as they appear in topology are "constructions" or "images". I wish I understood them as associated with "kernels". Rotational virtual tangles explain quantum groups as associated with a kernel of an extension, but I don't have an explanation within that context for why clean formulas arise. What is the relationship between quantum groups and expansions?
- I don't understand the first thing about Heegaard-Floer homology. Maybe Juhász' arXiv:1310.3418, Manolescu's arXiv: 1401.7107, or Lipshitz' arXiv:1411.4540.
- If it has the word Kähler in it, I shy away.
- I don't understand projective and injective resolutions, Ext and Tor, the universal coefficients theorem, etc.
- I am yet to internalize "sheafs".
- I've never figured "derived". Perhaps Yekutieli's arXiv: 1501.06731?
- I've never figured "perverse".
- I don't understand the Künneth and Eilenberg-Zilber theorems.
- I don't understand the relationship between $g r$ and H, as it appears, for example, in braid theory. - Perhaps Berglund's Koszul Spaces?
- I have no clue what are "motives".
- I don't understand Tannakian reconstruction principles, and I wish I did. - Given an algebra A let $\mathcal{D}:=A-\operatorname{Mod}$ (projective (?) left A-modules), let $C:=\operatorname{Vect}$ and $G: \mathcal{D} \rightarrow C$ be the forGetful functor. Then $A \simeq \operatorname{End}(G)$ by

$$
\begin{gathered}
a \in A \mapsto(\text { the action of } a \text { on any } X \in \mathcal{D} \text {), } \\
\left\{a_{X}: G(X) \rightarrow G(X)\right\}_{X \in \mathcal{D}} \mapsto a_{A}(1) \in A .
\end{gathered}
$$

— Given a monoidal \mathcal{D} and an exact $G: \mathcal{D} \rightarrow \mathcal{C}=$: Vect with a natural isomorphism $\alpha_{X, Y}: G(X) G(Y) \rightarrow G(X Y)$, there is a Hopf algebra structure on $H:=\operatorname{End}(G)$: product is composition, coproduct $\Delta: H \rightarrow H^{2}=\operatorname{End}\left(G^{2}: \mathcal{D} \times \mathcal{D} \rightarrow C\right)$ by

$$
\left(h_{X}\right)_{X \in \mathcal{D}} \mapsto\left((X, Y) \mapsto \alpha_{X, Y} / / h_{X Y} / / \alpha_{X, Y}^{-1} \in \operatorname{End}(G(X) G(Y))\right)
$$

- I don't understand Pfaffians (though of all my troubles, this is perhaps the least). - See Wikipedia, Parameswaran, Ledermann. Concisely, if $\lambda_{\{i j\}}=0$, then

$$
\left(\lambda_{i j} d x^{i} \wedge d x^{j}\right)^{n / 2}=\sqrt{\operatorname{det}\left(\lambda_{i j}\right)} \bigwedge_{i} d x^{i}
$$

(common in symplectic geometry), so $\sqrt{\operatorname{det}\left(\lambda_{i j}\right)}$ is a polynomial
in the $\lambda_{i j}$'s. Itai/Yael: with $\omega=\lambda_{i j} d x^{i} \wedge d x^{j}$, need

$$
\operatorname{det}\left(\omega\left(u_{i}, v_{j}\right)\right)=\omega^{n / 2}\left(u_{1}, \ldots, u_{n}\right) \omega^{n / 2}\left(v_{1}, \ldots, v_{n}\right)
$$

Easy from multi-linearity and anti-symmetry if $\left(u_{i}\right)$ and $\left(v_{j}\right)$ are in a symplectic basis for ω.

- I don't understand the Goussarov-Polyak-Viro theorem.
- I don't understand knot signatures (and signatures in general).
- I don't fully understand the Goussarov-Habiro theory of claspers.
- I don't understand Gröbner bases.
- I still don't know a proof of the Milnor-Moore theorem. Maybe "Spencer Bloch's course on Hopf Algebras" or Kreimer's thesis. Maybe search inside?
- I still don't understand Vogel's construction.
- I'm missing the key to equivariant cohomology, $E G, B G$, and all that. - I need a framework for $X_{G}:=(X \times E G) / G$.
- I don't understand fusion categories and subfactors. -

Morrison's drorbn.net/dbnvp/Morrison-140220?

- I don't understand group cohomology.
—Pensieve: 2013-02: G group; M a G-module; $C^{n}(G, M):=\left\{\varphi: G^{n} \rightarrow M\right\} ; \quad$ "derived from $M \rightarrow M^{G}$ "

$$
\begin{gathered}
(d \varphi)\left(g_{1}, \ldots, g_{n+1}\right):=g_{1} \varphi\left(g_{2}, \ldots, g_{n+1}\right)+\sum_{i=1}^{n}(-)^{i} \varphi\left(\ldots, g_{i} g_{i+1}, \ldots\right)+(-)^{n+1} \varphi\left(g_{1}, \ldots, g_{n}\right) . \\
(\varphi \cup \psi)\left(g_{1}, \ldots, g_{n+m}\right):=\sum_{\sigma \text { monotone on } 1 . . n \& \text { on }(n+1) . .(n+m)}^{(-)^{\sigma} \varphi\left(g_{\sigma 1}, \ldots, g_{\sigma n}\right) \psi\left(g_{\sigma(n+1)}, \ldots, g_{\sigma(n+m)}\right)}
\end{gathered}
$$

At $M=\mathbb{K}: \bullet H^{*}=H^{*}(K(G, 1)) . \bullet H^{1}=\operatorname{Hom}(G, \mathbb{K}) . \bullet H^{2} \leftrightarrow$ central extensions by $\mathbb{K} . \quad H^{3}\left(G, \mathbb{K}^{\times}\right) \leftrightarrow$ categorifications of $\mathbb{Z} G$.

- I don't understand the basics of three-dimensional topology: the loop and sphere theorems, JSJ decompositions, etc. Coninuing 2013-11: CheatShect3DTopolog.pdf

From Hatcher's notes:
Definition. M prime: $M=P \# Q \Rightarrow\left(P=S^{3}\right) \vee\left(Q=S^{3}\right)$. M Irreducible: an embedded 2 -sphere in M bounds a 3-ball. (Irreducible \Rightarrow Prime).
Theorem (Alexander, 1920s). S^{3} is irreducible.
Proof. Study the change to the "canonical closure" of a cropped embedded S^{2} under the following cases:

Theorem. Orientable, prime, not irreducible $\Rightarrow S^{2} \times S^{1}$. Nonorientable? Also $S^{2} \widetilde{\times} S^{1}$ (Klein 3D).
Theorem. Compact connected orientable 3-manifolds have unique decomposition into primes.
Proof. • Given a system of splitting spheres (sss) and a θ-partition of one member, at least one part will make an sss. - An sss can be simplified relative to a fixed triangulation τ : only disk intersections with simplices; circle and single-edge-arc intersections with faces of τ can be eliminated. \bullet The size of an sss is bounded

From Hempel's book:

Dehn's Lemma (Dehn 1910 (wrong), Papakyriakopoulos 1950s). M a 3 -manifold, $f: B^{2} \rightarrow M$ s.t. for some neighborhood A of ∂B^{2} in B^{2} the restriction $\left.F\right|_{A}$ is an embedding and $f^{-1}(f(A))=A$. Then $\left.f\right|_{\partial B^{2}}$ extends to an embedding $g: B^{2} \rightarrow M$. The Loop Theorem (Stallings 1960, implies Dehn's lemma). M
by $4|\tau|+\operatorname{rank} H_{1}(M ; \mathbb{Z} / 2)$ and hence prime-decompositions exist. - Uniqueness.

Nonorientable M ? Same but $M \#\left(S^{2} \times S^{1}\right)=M \#\left(S^{2} \widetilde{\times} S^{1}\right)$.
Theorem. If a covering is irreducible, so is the base. ([Ha] proof is fishy).
Examples. Lens spaces, surface bundles $F \rightarrow M \rightarrow S^{1}$ with $F \neq S^{2}, \mathbb{R} \mathrm{P}^{2}$. Yet $S^{1} \times S^{2} /(x, y) \sim(\bar{x},-y)=\mathbb{R} \mathrm{P}^{3} \# \mathbb{R} \mathrm{P}^{3}$, a prime covers a sum.
Definition. $S \subset M^{3}$ a 2-sided surface, $S \neq S^{2}, S \neq D^{2}$. Compressing disk for S is a disk $D \subset M$ with $D \cap S=\partial D$. If for every compressing D there's a disk $D^{\prime} \subset S$ with $\partial D^{\prime}=\partial D, S$ is incompressible.
Claims. • $\pi_{1}(S) \hookrightarrow \pi_{1}(M) \Rightarrow S$ incompressible. • No incompressibles in \mathbb{R}^{3} / S^{3}. • In irreducible M^{3}, T^{2} is 2 -sided incompressible iff T bounds a $D^{2} \times S^{1}$ or T is contained in a B^{3}. - A T^{2} in S^{3} bounds a $D^{2} \times S^{1}$ on at least one side. $\bullet S \subset M$ incompressible \Rightarrow (M irreducible iff $M \mid S$ irreducible). $\bullet S$ a collection of disjoint incompressibles or disks or spheres in $M, T \subset M \mid S$. Then T is incompressible in M iff in $M \mid S$.
a 3-manifold, F a connected 2 -manifold in $\partial M, \operatorname{ker}\left(\pi_{1}(F) \rightarrow\right.$ $\pi_{1}(M) \not \subset \quad N \triangleleft \pi_{1}(F)$. Then there is a proper embedding $g:\left(B^{2}, \partial B^{2}\right) \rightarrow(M, F)$ s.t. $\left[\left.g\right|_{\partial B^{2}}\right] \notin N$.
The Sphere Theorem. M orientable 3-manifold, N a $\pi_{1}(M)$ invariant proper subgroup of $\pi_{2}(M)$. Then there is an embedding $g: S^{2} \rightarrow M$ s.t. $[g] \notin N$.

Redeemed Confessions.

- I don't understand Galois theory, for real. Abstractness
crete terms. I wish I did too. - youtu.be/RhpVSV6iCko and then drorbn.net/dbnvp/AKT-140314.php and http://www. math.toronto.edu/~drorbn/Talks/CMU-1504/ do the job!

