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A Perturbed-Alexander Invariant

Dror Bar-Natan and Roland van der Veen

Abstract. In this note we give concise formulas, which lead to a simple and fast computer pro-
gram that computes a powerful knot invariant. This invariant 𝜌1 is not new, yet our formulas
are by far the simplest and fastest: given a knot we write one of the standard matrices 𝐴 whose
determinant is its Alexander polynomial, yet instead of computing the determinant we consider
a certain quadratic expression in the entries of 𝐴−1. The proximity of our formulas to the Alex-
ander polynomial suggests that they should have a topological explanation. This we do not have
yet.

1. The Formulas

One of the selling points for this article is that the formulas in it are concise. Thus
we start by running through these formulas for a knot invariant 𝜌1 as quickly as we
can. In Section 2 we turn the formulas into a short yet very fast computer program,
in Section 3 we give a partial interpretation of the formulas in terms of car traffic on
a knot diagram and use it to prove the invariance of 𝜌1, and in Section 4 we quickly
sketch the context: Alexander, Burau, Jones, Melvin, Morton, Rozansky, Overbay, and
our own prior work. This article accompanies two talks, [BN9] and [BN10] (videos
and handouts available).
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poly-time computations, quantum algebra, Reidemeister moves, ribbon knots, Seifert surfaces,
solvable approximation.
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Given an oriented 𝑛-crossing knot 𝐾 , we draw it in the plane

as a long knot diagram 𝐷 in such a way that the two strands inter-
secting at each crossing are pointed up (that’s always possible
because we can always rotate crossings as needed), and so that
at its beginning and at its end the knot is oriented upward. We
call such a diagram an upright knot diagram. An example of an
upright knot diagram 𝐷3 is shown on the right.

We then label each edge of the diagram with two integer labels:
a running index 𝑘 which runs from 1 to 2𝑛 + 1, and a “rota-
tion number” 𝜑𝑘 , the geometric rotation number of that edge (the
signed number of times the tangent to the edge is horizontal and
heading right, with cups counted with +1 signs and caps with −1;
this number is well defined because at their ends, all edges are
headed up). On the right the running index runs from 1 to 7, and
the rotation numbers for all edges are 0 (and hence are omitted)
except for 𝜑4, which is −1.

A Technicality. Some Reidemeister moves create or lose an edge and to avoid
the need for renumbering it is beneficial to also allow labelling the edges with non-
consecutive labels. Hence we allow that, and write 𝑖+ for the successor of the label 𝑖
along the knot, and 𝑖++ for the successor of 𝑖+ (these are 𝑖 + 1 and 𝑖 + 2 if the labelling is
by consecutive integers). Also, “1” will always refer to the label of the first edge, and
“2𝑛 + 1” will always refer to the label of the last.

We let 𝐴 be the (2𝑛 + 1) × (2𝑛 + 1) matrix of Laurent polynomials in the formal
variable 𝑇 defined by

𝐴 B 𝐼 −
∑︁
𝑐

(
𝑇 𝑠𝐸𝑖,𝑖+ + (1 − 𝑇 𝑠)𝐸𝑖, 𝑗+ + 𝐸 𝑗 , 𝑗+

)
,

where 𝐼 is the identity matrix and 𝐸𝛼𝛽 denotes the elementary matrix with 1 in row
𝛼 and column 𝛽 and zeros elsewhere. The summation is over the crossings 𝑐 of the
diagram 𝐷, and once 𝑐 is chosen, 𝑠 denotes its sign and 𝑖 and 𝑗 denote the labels below
the crossing where the label 𝑖 belongs to the over-strand and 𝑗 to the under-strand.

Alternatively, 𝐴 = 𝐼 + ∑
𝑐 𝐴𝑐, where 𝐴𝑐 is a matrix of zeros except for the blocks

as follows:

𝑖 𝑖𝑗

𝑠 = +1 𝑠 = −1
𝑗

𝑗+ 𝑖+ 𝑖+ 𝑗+

−→
𝐴𝑐 column 𝑖+ column 𝑗+

row 𝑖 −𝑇 𝑠 𝑇 𝑠 − 1
row 𝑗 0 −1

(1.1)
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For example, if𝐷 = 𝐷1 is the diagram with no crossings (as
shown on the right), the resulting matrix 𝐴 is the 1 × 1 identity
matrix (1). If 𝐷 = 𝐷2 is the second diagram on the right (here
𝑠 = +1, (𝑖, 𝑗) = (2, 1), and (𝑖+, 𝑗+) = (3, 2)), then

𝐴 =
©­­«
1 0 0
0 1 0
0 0 1

ª®®¬ +
©­­«
0 −1 0
0 𝑇 − 1 −𝑇
0 0 0

ª®®¬ =
©­­«
1 −1 0
0 𝑇 −𝑇
0 0 1

ª®®¬ ,
and for 𝐷3 as on the first page, we have

𝐴 =

©­­­­­­­­­«

1 −𝑇 0 0 𝑇 − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −𝑇 0 0 𝑇 − 1
0 0 0 1 −1 0 0
0 0 𝑇 − 1 0 1 −𝑇 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1

ª®®®®®®®®®¬
.

We note without supplying details that the matrix 𝐴 comes in a straightforward
way from Fox calculus as it is applied to the Wirtinger presentation of the fundamental
group of the complement of 𝐾 (using the diagram 𝐷). Hence the determinant of 𝐴
is equal up to a unit to the normalized Alexander polynomial Δ of 𝐾 (which satisfies
Δ(𝑇) = Δ(𝑇−1) and Δ(1) = 1). In fact, we have that

Δ = 𝑇 (−𝜑 (𝐷)−𝑤(𝐷) )/2 det(𝐴), (1.2)

where 𝜑(𝐷) B ∑
𝑘 𝜑𝑘 is the total rotation number of 𝐷 and where 𝑤(𝐷) = ∑

𝑐 𝑠𝑐 is
the writhe of 𝐷, namely the sum of the signs 𝑠𝑐 of all the crossings 𝑐 in 𝐷.

For our example𝐷2, det(𝐴) =𝑇 , 𝜑(𝐷) = 1, and𝑤(𝐷) = 1, soΔ =𝑇 (−1−1)/2 ·𝑇 = 1,
as expected for a diagram of the unknot. For 𝐷3, det(𝐴) = 1 −𝑇 +𝑇2, 𝜑(𝐷) = −1, and
𝑤(𝐷) = 3, so Δ = 𝑇 (1−3)/2(1 − 𝑇 + 𝑇2) = 𝑇 − 1 + 𝑇−1, as expected for the trefoil knot.

We set1 𝐺 = (𝑔𝛼𝛽) = 𝐴−1, and taking our inspiration from physics, we name 𝑔𝛼𝛽
the Green function for the diagram 𝐷. For our three examples 𝐷1, 𝐷2, and 𝐷3, the

1At 𝑇 = 1 the matrix 𝐴 has 1’s on the main diagonal, (−1)’s on the diagonal above it, and
0’s everywhere else. Hence 𝐴 is invertible at 𝑇 = 1 and hence over the field of rational functions.
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Green function 𝐺 is respectively

(
1
)
,

©­­«
1 𝑇−1 1
0 𝑇−1 1
0 0 1

ª®®¬ ,
©­­­­­­­­­­­«

1 𝑇3−𝑇2+𝑇
𝑇2−𝑇+1 1 𝑇3−𝑇2+𝑇

𝑇2−𝑇+1 1 𝑇3−𝑇2+𝑇
𝑇2−𝑇+1 1

0 1 1
𝑇2−𝑇+1

𝑇

𝑇2−𝑇+1
𝑇

𝑇2−𝑇+1
𝑇2

𝑇2−𝑇+1 1
0 0 1

𝑇2−𝑇+1
𝑇

𝑇2−𝑇+1
𝑇

𝑇2−𝑇+1
𝑇2

𝑇2−𝑇+1 1
0 0 1−𝑇

𝑇2−𝑇+1
1

𝑇2−𝑇+1
1

𝑇2−𝑇+1
𝑇

𝑇2−𝑇+1 1
0 0 1−𝑇

𝑇2−𝑇+1
𝑇−𝑇2

𝑇2−𝑇+1
1

𝑇2−𝑇+1
𝑇

𝑇2−𝑇+1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1

ª®®®®®®®®®®®¬
.

(1.3)
We can now define our invariant 𝜌1. It is the sum of two sums. The first is a sum

of a term 𝑅1(𝑐) over all crossings 𝑐 in 𝐷, where for such a crossing we let 𝑠 denote its
sign and we let 𝑖 and 𝑗 denote the edge labels of the incoming over- and under-strands,
respectively and where

𝑅1(𝑐) B 𝑠
(
𝑔 𝑗𝑖

(
𝑔 𝑗+ , 𝑗 + 𝑔 𝑗 , 𝑗+ − 𝑔𝑖 𝑗

)
− 𝑔𝑖𝑖

(
𝑔 𝑗 , 𝑗+ − 1

)
− 1/2

)
. (1.4)

The second sum is a sum over the edges 𝑘 of 𝐷 of a correction term dependent on the
rotation number 𝜑𝑘 . We multiply the result by Δ2 to “clear the denominators”2:

𝜌1 B Δ2

(∑︁
𝑐

𝑅1(𝑐) −
∑︁
𝑘

𝜑𝑘 (𝑔𝑘𝑘 − 1/2)
)
, (1.5)

Direct calculations show that 𝜌1(𝐷1) = 0 (as the sums are empty), 𝜌1(𝐷2) = 0,
and 𝜌1(𝐷3) = −𝑇2 + 2𝑇 − 2 + 2𝑇−1 − 𝑇−2.

Theorem 1 (“Invariance”, proofs in Section 3). The quantity 𝜌1 is a knot invariant.

As we shall see in the next section, 𝜌1 has more separation power than the Jones
polynomial, yet it is closer to the more topologically meaningful Alexander polynomial
Δ: it is cooked up from the same matrix 𝐴 and in terms of computational complexity,
computing 𝜌1 is not very different from computing Δ. In order to compute Δ we need
to compute the determinant of 𝐴, while to compute 𝜌1 we need to invert 𝐴 and then
compute a sum of 𝑂 (𝑛) terms that are quadratic in the entries of 𝐴−1.3 We have com-
puted 𝜌1 for knots with over 200 crossings using the unsophisticated implementation
presented in Section 2.

Topologists should be intrigued! 𝜌1 is derived from the same matrix as the Alex-
ander polynomial Δ, yet we have no topological interpretation for 𝜌1.

2𝑅1 (𝑠) is quadratic in the entries of 𝐺 and hence it has denominators proportional to Δ2.
3We prefer not to be more specific about the complexity of computing 𝜌1. It is the same as

the complexity of inverting 𝐴, and matrix inversion is poly-time, with a rather small exponent,
even for matrices with entries in a ring of polynomials (e.g. [St]). We have not explored how
much one can further gain by exploiting the fact that 𝐴 is very sparse.
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2. Implementation and Power

Two of the main reasons we like 𝜌1 is that it is very easy to implement and even an
unsophisticated implementation runs very fast. To highlight these points we include
a full implementation here, a step-by-step run-through, and a demo run. We write in
Mathematica [Wo], and you can find the notebook displayed here at [BV4, APAI.nb].

We start by loading the library KnotTheory‘ [BM] (it is used here only for the list
of knots that it contains, and to compute other invariants for comparisons). We also
load a minor conversion routine [BV4, Rot.nb / Rot.m] whose internal workings are
irrelevant here.

Once[<< KnotTheory`; << Rot.m];

Loading KnotTheory` version of February 2, 2020, 10:53:45.2097.

Read more at http://katlas.org/wiki/KnotTheory.

"Loading Rot.m from http://drorbn.net/APAI to compute rotation numbers.

2.1. The Program

This done, here is the full 𝜌1 program:

R1[s_, i_, j_] := s (gji (gj+,j + gj,j+ - gij) - gii (gj,j+ - 1) - 1/2);

ρ[K_] := ρ[K] = Module{Cs, φ, n, A, s, i, j, k, Δ, G, ρ1},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

ρ1 = 
k=1

n
R1 @@ Cs〚k〛 - 

k=1

2 n
φ〚k〛 (gkk - 1/2);

Factor@Δ, Δ
2
ρ1 /. α_+

 α + 1 /. gα_,β_  G〚α, β〛;

The program uses mostly the same symbols as the text, so even without any know-
ledge of Mathematica, the reader should be able to recognize at least formulas (1.1),
(1.2), and (1.5) within it. As a further hint we add that the variable Cs ends up storing
the list of crossings in a knot 𝐾 , where each crossing is stored as a triple (𝑠, 𝑖, 𝑗), where
𝑠, 𝑖, and 𝑗 have the same meaning as in (1.1). The conversion routine Rot automatically
produces Cs, as well as a list 𝜑 of rotation numbers, given any other knot presentation
known to the package KnotTheory‘.

Note that the program outputs the ordered pair (Δ, 𝜌1). The Alexander polyno-
mial Δ is anyway computed internally, and we consider the aggregate (Δ, 𝜌1) as more
interesting than any of its pieces by itself.
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2.2. A Step-by-Step Run-Through

We start by setting 𝐾 to be the knot diagram on page 1 using the PD notation of
KnotTheory‘ [BM]. We then print Rot[K], which is a list of crossings followed by a
list of rotation numbers:

K = PD[X[4, 2, 5, 1], X[2, 6, 3, 5], X[6, 4, 7, 3]];

Rot[K]

{{{1, 1, 4}, {1, 5, 2}, {1, 3, 6}}, {0, 0, 0, -1, 0, 0}}

Next we set Cs and 𝜑 to be the list of crossings, and the list of rotation numbers,
respectively.

{Cs, φ} = Rot[K]

{{{1, 1, 4}, {1, 5, 2}, {1, 3, 6}}, {0, 0, 0, -1, 0, 0}}

We set n to be the number of crossings, A to be the (2𝑛 + 1)-dimensional identity
matrix, and then we iterate over c in Cs, adding a block as in (1.1) for each crossing.

n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

Here’s what A comes out to be:

A // MatrixForm

1 -T 0 0 -1 + T 0 0

0 1 -1 0 0 0 0

0 0 1 -T 0 0 -1 + T

0 0 0 1 -1 0 0

0 0 -1 + T 0 1 -T 0

0 0 0 0 0 1 -1

0 0 0 0 0 0 1

We set Δ to be the determinant of A, with a correction as in (1.2). So Δ is the
Alexander polynomial of 𝐾 .

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A]

1 - T + T2

T

G is now the Inverse of A:

G = Inverse[A];

G // MatrixForm
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1 T-T2+T3

1-T+T2
1 T-T2+T3

1-T+T2
1 T-T2+T3

1-T+T2
1

0 1 1

1-T+T2
T

1-T+T2
T

1-T+T2
T2

1-T+T2
1

0 0 1

1-T+T2
T

1-T+T2
T

1-T+T2
T2

1-T+T2
1

0 0 1-T

1-T+T2
1

1-T+T2
1

1-T+T2
T

1-T+T2
1

0 0 1-T

1-T+T2
T-T2

1-T+T2
1

1-T+T2
T

1-T+T2
1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

It remains to blindly follow the two parts of Equation (1.5):

ρ1 = 
k=1

n
R1 @@ Cs〚k〛 - 

k=1

2 n
φ〚k〛 (gkk - 1/2)

-2 + g4,4 - g1,1 (-1 + g4,4+) - (-1 + g2,2+) g5,5 - g3,3 (-1 + g6,6+) +

g2,5 (g2,2+ - g5,2 + g2+,2) + g4,1 (-g1,4 + g4,4+ + g4+,4) + g6,3 (-g3,6 + g6,6+ + g6+,6)

We replace each g𝛼𝛽 with the appropriate entry of G:

Δ
2
ρ1 /. α_+

 α + 1 /. gα_,β_  G〚α, β〛

1 - T + T22 -1 +
T

1-T+T22
-

-1+
1

1-T+T2

1-T+T2

T2

Finally, we output both Δ and 𝜌1. We factor them just to put them in a nicer form:

Factor@Δ, Δ
2
ρ1 /. α_+

 α + 1 /. gα_,β_  G〚α, β〛


1 - T + T2

T
, -

(-1 + T)2 1 + T2

T2


2.3. A Demo Run

Here are Δ and 𝜌1 of all the knots with up to 6 crossings (a table up to 10 crossings is
printed at [BV3]:

TableForm[Table[Join[{K}, ρ[K]], {K, AllKnots[{3, 6}]}], TableAlignments  Center]

KnotTheory: Loading precomputed data in PD4Knots`.
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Figure 1. A 48-crossing knot from [GST].

Knot[3, 1] 1-T+T2

T

(-1+T)2 1+T2

T2

Knot[4, 1] -
1-3 T+T2

T
0

Knot[5, 1] 1-T+T2-T3+T4

T2
(-1+T)2 1+T2 2+T2+2 T4

T4

Knot[5, 2] 2-3 T+2 T2

T

(-1+T)2 5-4 T+5 T2

T2

Knot[6, 1] -
(-2+T) (-1+2 T)

T

(-1+T)2 1-4 T+T2

T2

Knot[6, 2] -
1-3 T+3 T2-3 T3+T4

T2
(-1+T)2 1-4 T+4 T2-4 T3+4 T4-4 T5+T6

T4

Knot[6, 3] 1-3 T+5 T2-3 T3+T4

T2
0

Some comments are in order:

• If �̄� is the mirror of a knot 𝐾 , then 𝜌1(�̄�) (𝑇) = −𝜌1(𝐾) (𝑇−1). Indeed in (1.5) both
𝑅1(𝑐) and 𝜑𝑘 flip sign under reflection in a plane perpendicular to the plane of the
knot diagram, and the matrix 𝐴 and hence also all the 𝑔𝛼𝛽’s are the same except
for the substitution 𝑇 → 𝑇−1.

• 𝜌1 seems to always be divisible by (𝑇 − 1)2 and seems to always be palindromic
(𝜌1(𝑇) = 𝜌1(𝑇−1)). We are not sure why this is so.

• The last properties taken together would imply that 𝜌1 vanishes on amphicheiral
knots, such as 41 and 63 above.
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Next is one of our favourites, a knot from [GST] (see Figure 1), which is a poten-
tial counterexample to the ribbon=slice conjecture [Fo]. It takes about two minutes to
compute 𝜌1 for this 48 crossing knot (note that Mathematica prints Timing informa-
tion is seconds, and that this information is highly dependent on the CPU used, how
loaded it is, and even on its temperature at the time of the computation):

Timing@ρEPDX14,1, X2,29, X3,40, X43,4, X26,5, X6,95, X96,7, X13,8, X9,28, X10,41, X42,11,

X27,12, X30,15, X16,61, X17,72, X18,83, X19,34, X89,20, X21,92, X79,22, X68,23, X57,24,

X25,56, X62,31, X73,32, X84,33, X50,35, X36,81, X37,70, X38,59, X39,54, X44,55, X58,45,

X69,46, X80,47, X48,91, X90,49, X51,82, X52,71, X53,60, X63,74, X64,85, X76,65, X87,66,

X67,94, X75,86, X88,77, X78,93

158.625, -
-1 + 2 T - T2 - T3 + 2 T4 - T5 + T8 -1 + T3 - 2 T4 + T5 + T6 - 2 T7 + T8

T8
,

1

T16
(-1 + T)2 5 - 18 T + 33 T2 - 32 T3 + 2 T4 + 42 T5 - 62 T6 - 8 T7 + 166 T8 - 242 T9 + 108 T10 +

132 T11 - 226 T12 + 148 T13 - 11 T14 - 36 T15 - 11 T16 + 148 T17 - 226 T18 + 132 T19 + 108 T20 -

242 T21 + 166 T22 - 8 T23 - 62 T24 + 42 T25 + 2 T26 - 32 T27 + 33 T28 - 18 T29 + 5 T30

2.4. The Separation Power of 𝝆1

Let us check how powerful 𝜌1 is on knots with up to 12 crossings:

{NumberOfKnots[{3, 12}],

Length@Union@Table[ρ[K], {K, AllKnots[{3, 12}]}],

Length@Union@Table[{HOMFLYPT[K], Kh[K]}, {K, AllKnots[{3, 12}]}]}

{2977, 2882, 2785}

So the pair (Δ, 𝜌1) attains 2,882 distinct values on the 2,977 prime knots with up to
12 crossings (a deficit of 95), whereas the pair (𝐻, 𝐾ℎ) = (HOMFLYPT polynomial,
Khovanov Homology) attains only 2,785 distinct values on the same knots (a deficit
of 192).

In our spare time we computed all of these invariants on all the prime knots with
up to 14 crossings. On these 59,937 knots the pair (Δ, 𝜌1) attains 53,684 distinct values
(a deficit of 6,253) whereas the pair (𝐻, 𝐾ℎ) attains only 49,149 distinct values on the
same knots (a deficit of 10,788).

Hence the pair (Δ, 𝜌1), computable in polynomial time by simple programs, seems
stronger than the pair (𝐻, 𝐾ℎ), which is more difficult to program and (for all we
know) cannot be computed in polynomial time. We are not aware of another poly-time
invariant as strong as the pair (Δ, 𝜌1).
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R2cR1rR1l R2b

R3 Sw+

Figure 2. The upright Reidemeister moves: Reidemeister 1 left and right, Reidemeister 2 braid-
like and cyclic, Reidemeister 3, and (the +) Swirl.

3. Proofs of Theorem 1, the Invariance Theorem

We tell the proof of the Invariance Theorem (Theorem 1) in two ways: an elegant and
intuitive though slightly lacking telling in Section 3.2, and a complete though slightly
dull telling in Section 3.3. But first, a few common elements.

3.1. Common Elements

Two upright knot diagrams are considered the same (as diagrams) if their underlying
knot diagrams are the same, and if the respective rotation numbers of their edges are
all the same. It is clear that 𝜌1 is well defined on upright knot diagrams. To prove
Theorem 1 we need to know what to prove. Namely, when do two upright knot diagrams
represent the same knot? This is answered in the spirit of the classical Reidemeister
theorem by the following:

Theorem 2 (“Upright Reidemeister”). Two upright knot diagrams represent the same
knot if and only if they differ by a sequence of R1l, R2r, R2b, R2c, R3, and Sw+ moves
as in Figure 2.

Sketch of the proof. In the case of round knots (i.e., not “long”), knot diagrams can
be turned upright by rotating individual crossings. The only ambiguity here is by
powers of the full rotation, the swirls Sw+ and Sw− (where Sw− is the same as Sw+

except with a negative crossing, and we don’t need to impose it separately as it fol-
lows from Sw+ and R2). Hence we have a well-defined map from {knot diagrams}
to {upright knot diagrams}/Sw±. It remains to write the usual Reidemeister moves
between knot diagrams as moves between upright knot diagrams. The result are the
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moves R1l, R2r, R2b, R2c, and R3. Note that unoriented knot theory is presented with
just three Reidemeister moves, but these split into several versions in the oriented case.
The sufficiency of the versions we picked can be found in [Po]. In the case of long knots
a minor further complication arises, regarding the rotation numbers of the initial and
final edges. We leave the details of the problem and its resolution to the reader. □

Our key formulas, (1.4) and (1.5) involve the Green function 𝑔𝛼𝛽 . We need to know
that it is subject to some relations, the 𝑔-rules of Lemma 3 below, whose proof is so
easy that it comes first:
Proof of Lemma 3. The first set of 𝑔-rules reads out column 𝛽 of the equality 𝐴𝐺 = 𝐼,
and the second set of 𝑔-rules reads out row 𝛼 of the equality 𝐺𝐴 = 𝐼. □

Lemma 3 (“𝑔-rules”). Given a fixed upright knot diagram𝐷, its corresponding matrix
𝐴, and its inverse 𝐺 = (𝑔𝛼𝛽), and given a crossing 𝑐 = (𝑠, 𝑖, 𝑗) in 𝐷 (with 𝑠, 𝑖, and 𝑗
as before), the following two sets of relations (the 𝑔-rules) hold (with 𝛿 denoting the
Kronecker delta):

𝑔𝑖𝛽 = 𝛿𝑖𝛽 + 𝑇 𝑠𝑔𝑖+ ,𝛽 + (1 − 𝑇 𝑠)𝑔 𝑗+ ,𝛽 , 𝑔 𝑗𝛽 = 𝛿 𝑗𝛽 + 𝑔 𝑗+ ,𝛽 , 𝑔2𝑛+1,𝛽 = 𝛿2𝑛+1,𝛽
(3.1)

and

𝑔𝛼𝑖 = 𝑇
−𝑠 (𝑔𝛼,𝑖+ − 𝛿𝛼,𝑖+), 𝑔𝛼 𝑗 = 𝑔𝛼, 𝑗+ − (1 − 𝑇 𝑠)𝑔𝛼𝑖 − 𝛿𝛼, 𝑗+ , 𝑔𝛼,1 = 𝛿𝛼,1.

(3.2)
Furthermore, for each fixed 𝛽 there are 2𝑛 + 1 𝑔-rules of type (3.1) (the first two depend
on a choice of one of 𝑛 crossings, and the third is fixed, to a total of 2𝑛 + 1 rules). These
fully determine the 2𝑛 + 1 scalars 𝑔𝛼𝛽 corresponding to varying 𝛼. Similarly, for each
fixed 𝛼 there are 2𝑛 + 1 𝑔-rules of type (3.2). These fully determine the 2𝑛 + 1 scalars
𝑔𝛼𝛽 corresponding to varying 𝛽.

For later use, we teach our computer about 𝑔-rules:

δi_,j_ := If[i === j, 1, 0];

gRuless_,i_,j_ := giβ_  δiβ + Ts gi+,β + 1 - Ts gj+,β, gjβ_  δjβ + gj+,β,

gα_,i  T-s (gα,i+ - δα,i+), gα_j  gα,j+ - 1 - Ts gαi - δα,j+

(α_+
)
+ := α "++"; (* this is for cosmetic reasons only *)

3.2. Cars, Traffic Counters, and Interchanges

Our first proof of Theorem 1 is slightly informal as it uses the language and intuition of
probability theory even though our “probabilities” are merely algebraic formulae and
not numbers between 0 and 1. Seasoned mathematicians should see that there is no real
problem here. Yet just to be safe, we also include a fully formal proof in Section 3.3.

Cars ( , ) travel on knot diagrams subject to the following three rules, inspired
by Jones’ “bowling balls” [Jo] and by Lin, Tian, and Wang’s “random walks” [LTW]
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(within the proof of Proposition 5 below we will see that these rules are equivalent to
the 𝑔-rules of Equation (3.1) above):

• On plain roads (edges) they travel following the orientation of the edge.

• When reaching an underpass (the lower strand of a crossing), cars just pass through.

• When reaching an overpass cars pass through with probability 𝑇 𝑠 (where 𝑠 = ±1 is
the sign of the crossing), yet drop over to the lower strand with the complementary
probability of 1 − 𝑇 𝑠.

These rules can be summarized by the following pictures:

𝑝 = 1 − 𝑇 𝑠

1−𝑇 𝑇 1 0 0 1 𝑇−1 1−𝑇−1

In these pictures the horizontal struts represent “traffic counters” which measure
the amount of traffic that passes through their respective roads, and the output reading
of these counters is printed above them. Thus for example, the last interchange picture
indicates that if a unit stream of cars is injected into the diagram on the bottom right
and two traffic counters are placed at the top, then the first of these will read a car
intensity of 𝑇−1 and the second (1 − 𝑇−1).

Note that our probabilities aren’t really probabilities, if only because𝑇 and𝑇−1 can-
not both be between 0 and 1 simultaneously. Yet we will manipulate them algebraically
as if they are probabilities, restricting ourselves to equalities and avoiding inequalities.
With this restriction, we can use intuition from probability theory. We will pretend that
𝑇 𝑠 ∼ 1, or equivalently, that 1 − 𝑇 𝑠 ∼ 0. This has an algebraic meaning that does not
refer to inequalities. Namely, certain series can be deemed summable. For example,∑︁

𝑟≥0
(1 − 𝑇 𝑠)𝑟 =

1
1 − (1 − 𝑇 𝑠) = 𝑇−𝑠 .

1

3
2

𝐷2

Example 4. Cars are injected on edge #1 of the diagram𝐷2 of Section 1
as indicated on the right. What does the indicated traffic counter on edge
#2 measure?
Solution. Every car coming through the interchange from #1 passes
through the underpass and comes to #2, so the counter reads “1” just
for this traffic. But then these cars continue and pass on the overpass, and (1 − 𝑇) of
them fall down and continue through edge #2 and get counted again. But then these
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fallen cars continue and pass on the overpass once again, and (1 − 𝑇) of them, mean-
ing (1 − 𝑇)2 of the original traffic, fall once more and contribute a further reading of
(1 − 𝑇)2. This process continues and the overall counter reading is

1 + (1 − 𝑇) + (1 − 𝑇)2 + (1 − 𝑇)3 + . . . = 1
1 − (1 − 𝑇) = 𝑇−1.

Note that this is exactly the row 1 column 2 entry of the matrix 𝐺 computed for this
tangle in (1.3).

We claim that this is general:

Proposition 5. For a general knot diagram 𝐷, the entry 𝑔𝛼𝛽 of its Green function is
equal to the reading of a traffic counter placed at 𝛽 given that traffic is injected into 𝐷
at 𝛼. (In the case where 𝛼 = 𝛽, the counter is placed after where the traffic is injected,
not before).

Proof. Consider the 𝑔-rules of type (3.1). The third, 𝑔2𝑛+1,𝛽 = 𝛿2𝑛+1,𝛽 is the statement
that if traffic is injected on the outgoing edge of 𝐷, it can only be measured on the
outgoing edge of 𝐷 (so traffic never flows backwards). The second, 𝑔 𝑗𝛽 = 𝛿 𝑗𝛽 + 𝑔 𝑗+ ,𝛽 ,
is the statement that traffic goes through underpasses undisturbed, so 𝑔 𝑗𝛽 = 𝑔 𝑗+ ,𝛽 unless
the traffic counter 𝛽 is placed between 𝑗 and 𝑗+, in which case it measures one unit
more if the cars are injected before it, at 𝑗 , rather than after it, at 𝑗+. Similarly the first
of these 𝑔-rules, 𝑔𝑖𝛽 = 𝛿𝑖𝛽 + 𝑇 𝑠𝑔𝑖+ ,𝛽 + (1 − 𝑇 𝑠)𝑔 𝑗+ ,𝛽 , is the statement of the behaviour
of traffic at overpasses. Thus the rules in (3.1) are obeyed by cars and traffic counters,
and as the rules in (3.1) determine 𝑔𝛼𝛽 , the proposition follows. □

Proposition 6. The quantity 𝜌1 is invariant under R3.

Proof. We first show that cars entering a multiple interchange styled as the left hand
side of the R3 move, exit it with the exact same distribution as cars entering the multiple
interchange styled as the right hand side. The hardest part of that computation is when
cars enter at the bottom left (at 𝑖) and it boils down to the equality 1−𝑇 = (1−𝑇)2+
𝑇 (1−𝑇):

1−𝑇

1−𝑇

(1−𝑇)2+𝑇 (1−𝑇)𝑇2𝑇 (1−𝑇) (1−𝑇)𝑇 𝑇2

𝑇 (1−𝑇)

𝑇

𝑇

𝑖 𝑗 𝑘

𝑖+

𝑗++𝑘++ 𝑖++

𝑗+

𝑘+

𝑖 𝑗 𝑘

𝑖+
𝑗+

𝑘+

𝑘++ 𝑗++ 𝑖++

=
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If cars enter in the middle or at the bottom right (at 𝑗 or at 𝑘), the computation is even
easier.4

The conclusion is that performing the R3 move does not affect traffic patterns out-
side the area of the move itself; namely, the Green function 𝑔𝛼𝛽 is unchanged if both
𝛼 and 𝛽 are outside the area of the move.

Thus the only contribution to 𝜌1 that may change (see (1.5)) is the contribution
coming from the three 𝑅1 terms corresponding to the crossings that move, and we
need to know if the following equality holds:

𝑅1(+1, 𝑗 , 𝑘) + 𝑅1(+1, 𝑖, 𝑘+) + 𝑅1(+1, 𝑖+, 𝑗+)
?
= 𝑅1(+1, 𝑖, 𝑗) + 𝑅1(+1, 𝑖+, 𝑘) + 𝑅1(+1, 𝑗+, 𝑘+)

Both sides here are messy quadratics involving the 𝑔𝛼𝛽’s of both sides, evaluated
at 𝛼, 𝛽 ∈ {𝑖, 𝑗 , 𝑘, 𝑖+, 𝑗+, 𝑘+, 𝑖++, 𝑗++, 𝑘++}. But we can use the traffic rules (aka the 𝑔-
rules) to rewrite these quadratics in terms of the 𝑔𝛼𝛽’s with 𝛼, 𝛽 ∈ {𝑖++, 𝑗++, 𝑘++}, and
these are unchanged between the sides. So we simply need to know whether the above
equality holds after the relevant 𝑔-rules have been applied to both sides. We could do
that by hand, but it’s simpler to appeal to a higher wisdom:

lhs = R1[1, j, k] + R1[1, i, k+] + R1[1, i+, j+] //. gRules1,j,k ⋃ gRules1,i,k+ ⋃ gRules1,i+,j+;

rhs = R1[1, i, j] + R1[1, i+, k] + R1[1, j+, k+] //. gRules1,i,j ⋃ gRules1,i+,k ⋃ gRules1,j+,k+;

Simplify[lhs  rhs]

True

□

First Proof of Theorem 1, “Invariance”. We’ve shown invariance under R3. Invari-
ance under the other moves is shown in a similar way: first one shows that overall
traffic patterns are unchanged by each of the moves, and then one verifies that the local
contributions to 𝜌1 coming from the area changed by each move are equal once the
𝑔-rules are used to rewrite them in terms of 𝑔𝛼𝛽’s that are unaffected by the moves.
This is shown in greater detail in the following section. □

3.3. A More Formal Version of the Proof

Again we start with the hardest, R3:

Proposition 7. The quantity 𝜌1 is invariant under R3.

4Note that this computation is exactly the one that proves that the Burau representation [Bu]
respects R3.
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Proof. We need to know how the Green function 𝑔𝛼𝛽 changes under R3. Here are
the two sides of the move, along with the 𝑔-rules of type (3.1) corresponding to the
crossings within, written with the assumption that 𝛽 isn’t in {𝑖+, 𝑗+, 𝑘+}, so several of
the Kronecker deltas can be ignored. We use 𝑔 for the Green function at the left-hand
side of R3, and 𝑔′ for the right-hand side:

𝑔𝑖,𝛽 = 𝛿𝑖𝛽+𝑇𝑔𝑖+,𝛽+(1−𝑇)𝑔𝑘++,𝛽
𝑔𝑘+,𝛽 = 𝑔𝑘++,𝛽

𝑔𝑖+,𝛽 = 𝑇𝑔𝑖++,𝛽+(1−𝑇)𝑔 𝑗++,𝛽
𝑔 𝑗+,𝛽 = 𝑔 𝑗++,𝛽

𝑔 𝑗 ,𝛽 = 𝛿 𝑗𝛽+𝑇𝑔 𝑗+,𝛽+(1−𝑇)𝑔𝑘+,𝛽
𝑔𝑘,𝛽 = 𝛿𝑘𝛽+𝑔𝑘+,𝛽

𝑔′
𝑖+,𝛽 = 𝑇𝑔′

𝑖++,𝛽+(1−𝑇)𝑔
′
𝑘+,𝛽

𝑔′
𝑘,𝛽

= 𝛿𝑘𝛽+𝑔′𝑘+,𝛽

𝑔′
𝑗+,𝛽 = 𝑇𝑔′

𝑗++,𝛽+(1−𝑇)𝑔
′
𝑘++,𝛽

𝑔′
𝑘+,𝛽 = 𝑔′

𝑘++,𝛽

𝑔′
𝑖,𝛽

= 𝛿𝑖𝛽+𝑇𝑔′𝑖+,𝛽+(1−𝑇)𝑔
′
𝑗+,𝛽

𝑔′
𝑗 ,𝛽

= 𝛿 𝑗𝛽+𝑔′𝑗+,𝛽

𝑘++ 𝑗++ 𝑖++

𝑖 𝑗 𝑘

𝑖+
𝑗+

𝑘+

𝑘++ 𝑗++ 𝑖++

𝑖 𝑗 𝑘

𝑖+
𝑗+

𝑘+

A routine computation (eliminating 𝑔𝑖+ ,𝛽 , 𝑔 𝑗+ ,𝛽 , and 𝑔𝑘+ ,𝛽) shows that the first
system of 6 equations is equivalent to the following 3 equations:

𝑔𝑖,𝛽 = 𝛿𝑖𝛽 + 𝑇2𝑔𝑖++ ,𝛽 + 𝑇 (1 − 𝑇)𝑔 𝑗++ ,𝛽 + (1 − 𝑇)𝑔𝑘++ ,𝛽 ,

𝑔 𝑗 ,𝛽 = 𝛿 𝑗𝛽 + 𝑇𝑔 𝑗++ ,𝛽 + (1 − 𝑇)𝑔𝑘++ ,𝛽 , and 𝑔𝑘,𝛽 = 𝛿𝑘𝛽 + 𝑔𝑘++ ,𝛽 .

Similarly eliminating 𝑔′
𝑖+ ,𝛽 , 𝑔′

𝑗+ ,𝛽 , and 𝑔′
𝑘+ ,𝛽 from the second set of equations, we find

that it is equivalent to

𝑔′𝑖,𝛽 = 𝛿𝑖𝛽 + 𝑇2𝑔′𝑖++ ,𝛽 + 𝑇 (1 − 𝑇)𝑔′𝑗++ ,𝛽 + (1 − 𝑇)𝑔′𝑘++ ,𝛽 ,

𝑔′𝑗 ,𝛽 = 𝛿 𝑗𝛽 + 𝑇𝑔′𝑗++ ,𝛽 + (1 − 𝑇)𝑔′𝑘++ ,𝛽 , and 𝑔′𝑘,𝛽 = 𝛿𝑘𝛽 + 𝑔′𝑘++ ,𝛽 .

But these two sets of equations are the same, and as stated in the 𝑔-rules lemma
(Lemma 3), along with the 𝑔-rules corresponding to the other crossings in 𝐷 (which
are also the same between 𝑔 and 𝑔′), these equations determine 𝑔𝛼𝛽 and 𝑔′

𝛼𝛽
, for

𝛼, 𝛽 ∉ {𝑖+, 𝑗+, 𝑘+}. So with this exclusion on 𝛼 and 𝛽, we have that 𝑔𝛼𝛽 = 𝑔′
𝛼𝛽

. But this
means that the summations (1.5) in the definitions of 𝜌1 are equal for the two sides of
R3, except perhaps for the three summands on each side that come from the crossings
that touch {𝑖+, 𝑗+, 𝑘+}.

What remains is completely mechanical. We just need to compute the sum of those
three summands for both sides of R3, and apply to it the 𝑔-rules of types (3.1) and (3.2)
that eliminate the indices {𝑖+, 𝑗+, 𝑘+}. The computation is easy enough to be done by
hand, yet why bother? Here’s the machine version (it takes less typing to apply all
relevant 𝑔-rules and also eliminate the indices {𝑖, 𝑗 , 𝑘}):

lhs = Simplify

R1[1, j, k] + R1[1, i, k+] + R1[1, i+, j+] //. gRules1,j,k ⋃ gRules1,i,k+ ⋃ gRules1,i+,j+
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-
1

2 T2
-2 (-1 + T) T gj++,i++

2
+ 2 gj++,i++

T2 + T2 gi++,j++ - 2 T2 gj++,j++ + gk++,i++ - 2 T gk++,i++ + T2 gk++,i++ - T gk++,j++ + T2 gk++,j++ +

2 gi++,i++ -2 T2 + (-1 + T) T gj++,i++ + T2 gj++,j++ - gk++,i++ + T gk++,i++ + T2 gk++,k++ +

T 3 T - 2 (-1 + T) gk++,i++
2

+ 2 T gk++,j++ + 2 T gj++,k++ gk++,j++ + 2 gk++,j++
2

-

2 T gk++,j++
2

+ 2 gj++,j++ (-1 + T) gk++,i++ + (-1 + T) gk++,j++ + T (-1 + gk++,k++) -

4 T gk++,j++ gk++,k++ + 2 gk++,i++ T + T gi++,k++ - 2 (-1 + T) gk++,j++ - 2 T gk++,k++

rhs = Simplify

R1[1, i, j] + R1[1, i+, k] + R1[1, j+, k+] //. gRules1,i,j ⋃ gRules1,i+,k ⋃ gRules1,j+,k+

-
1

2 T2
-2 (-1 + T) T gj++,i++

2
+ 2 gj++,i++

T2 + T2 gi++,j++ - 2 T2 gj++,j++ + gk++,i++ - 2 T gk++,i++ + T2 gk++,i++ - T gk++,j++ + T2 gk++,j++ +

2 gi++,i++ -2 T2 + (-1 + T) T gj++,i++ + T2 gj++,j++ - gk++,i++ + T gk++,i++ + T2 gk++,k++ +

T 3 T - 2 (-1 + T) gk++,i++
2

+ 2 T gk++,j++ + 2 T gj++,k++ gk++,j++ + 2 gk++,j++
2

-

2 T gk++,j++
2

+ 2 gj++,j++ (-1 + T) gk++,i++ + (-1 + T) gk++,j++ + T (-1 + gk++,k++) -

4 T gk++,j++ gk++,k++ + 2 gk++,i++ T + T gi++,k++ - 2 (-1 + T) gk++,j++ - 2 T gk++,k++

lhs  rhs

True

□

Proposition 8. The quantity 𝜌1 is invariant under R2c.

Proof. We follow the exact same steps as in the case of 𝑅3. First, we write the 𝑔-rules,
assuming that 𝛽 is not in {𝑖, 𝑗 , 𝑖+, 𝑗+}:

∅
𝑗++

𝑖++

𝜑
𝑗+
+
=

1𝑗

𝑖++

𝑗++

𝑖

𝑖+

𝑔𝑖+,𝛽 = 𝑇𝑔𝑖++,𝛽 + (1 − 𝑇)𝑔 𝑗+,𝛽
𝑔 𝑗 ,𝛽 = 𝑔 𝑗+,𝛽

𝑔𝑖,𝛽 = 𝑇−1𝑔𝑖+,𝛽 + (1 − 𝑇−1)𝑔 𝑗++,𝛽
𝑔 𝑗+,𝛽 = 𝑔 𝑗++,𝛽

𝑗+

𝜑
𝑗+
=

1

Note that for the right hand side we allowed ourselves to label the edges 𝑖++ and
𝑗++ as the computation is independent of the labelling and the labelling need not be
by contiguous integers (outside of the move area, we assume that the left hand side
and the right hand side are labelled in the same way). Note also that for the right hand
side, there are no relevant 𝑔-rules. Now as in the case of R3, for the left hand side we
eliminate 𝑔𝑖+ ,𝛽 and 𝑔 𝑗+ ,𝛽 and we are left with the relations

𝑔𝑖,𝛽 = 𝑔𝑖++ ,𝛽 and 𝑔 𝑗 ,𝛽 = 𝑔 𝑗++ ,𝛽 .
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Otherwise the 𝑔-rules for the left and for the right are the same, and so their Green
functions are the same except if the indices are in {𝑖, 𝑗 , 𝑖+, 𝑗+} (these indices do not
even appear in the right hand side). Thus the contribution to 𝜌1 from outside the area
of the move is the same for both sides.

Next we write the contribution to 𝜌1 coming from the two crossings and one rota-
tion that appear on the left, and use the 𝑔-rules to push all the indices in {𝑖, 𝑗 , 𝑖+, 𝑗+}
up to 𝑖++ and 𝑗++. This can be done by hand, but seeing that we have tools, we use them
as follows:

Simplify[R1[-1, i, j+] + R1[1, i+, j] - (gj+,j+ - 1/2)]

lhs = SimplifyR1[-1, i, j+] + R1[1, i+, j] - (gj+,j+ - 1/2) //. gRules-1,i,j+ ⋃ gRules1,i+,j

1

2
- (-1 + gj,j+) gi+,i+ + gj,i+ (gj,j+ - gi+,j + gj+,j) +

gi,i -1 + gj+,j++ - gj+,i -gi,j+ + gj++,j+ + gj+,j++ - gj+,j+

1

2
- gj++,j++

This result is clearly equal to the single rotation contribution to 𝜌1 that comes from
the right hand side. □

Proposition 9. The quantity 𝜌1 is invariant under R1l.

Proof. We start with the relevant 𝑔-rules:

𝑖++

∅

𝑖

𝑖+

𝑖++

𝑔𝑖+,𝛽 = 𝛿𝑖+,𝛽 + 𝑇𝑔𝑖++,𝛽 + (1 − 𝑇)𝑔𝑖+,𝛽
𝑔𝑖,𝛽 = 𝛿𝑖,𝛽 + 𝑔𝑖+,𝛽

The first of these rules is equivalent to 𝑔𝑖+ ,𝛽 = 𝑇−1𝛿𝑖+ ,𝛽 + 𝑔𝑖++ ,𝛽 . For 𝛽 ≠ 𝑖, 𝑖+ we find
as before that 𝑔𝑖,𝛽 = 𝑔𝑖++ ,𝛽 and we can ignore the contributions to 𝜌1 coming from
outside the area of the move. The contribution to 𝜌1 coming from the single crossing
and single rotation on the left hand side is computed below, and is equal to the empty
contribution coming from the right hand side:

lhs1 = R1[1, i+, i] - (gi+,i+ - 1/2)

lhs2 = lhs1 //. gi+,β_  T-1 δi+,β + gi++,β, gi,β_  δi,β + gi+,β

Simplify[lhs2]

gi,i+
2

- gi+,i+ - (-1 + gi,i+) gi+,i+

-
1

T
- gi++,i+ - -1 +

1

T
+ gi++,i+

1

T
+ gi++,i+ +

1

T
+ gi++,i+

2

0
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□

Second Proof of Theorem 1, “Invariance”. After the Upright Reidemeister Theorem
(Theorem 2) which sets out what we need to do, and Propositions 7, 8, and 9 which
prove invariance under R3, R2c, and R1l, it remains to show the invariance of 𝜌1 under
R1r, R2b, and Sw+. This is done exactly as in the examples already shown, so in each
case we show only the punch line:

SimplifyR1[1, i, i+] + (gi+,i+ - 1/2) //.  (* R1r *)

giβ_  δiβ + T gi+,β + (1 - T) gi++,β, gi+,β_  δi+,β + gi++,β,

gα_,i  T-1 (gα,i+ - δα,i+), gα_,i+  T gα,i++ - (1 - T) δα,i+ - T δα,i++ 

0

(Note that the version of the 𝑔-rules we used above easily follows from (3.2)).

SimplifyR1[1, i, j] + R1[-1, i+, j+] //. gRules1,i,j ⋃ gRules-1,i+,j+ (* R2b *)

0

(gi,i - 1/2) + (gj,j - 1/2) - (gi+,i+ - 1/2) - (gj+,j+ - 1/2) //. gRules1,i,j (* Sw+ *)

0

□

4. Some Context and Some Morals

We would like to emphasize again that 𝜌1 seems very close to the Alexander polyno-
mial, yet we have no topological interpretation for it. Until that changes, where is 𝜌1
coming from?

It comes via a lengthy path, which we will only sketch here. For a while now [BV1,
BV3,BN2,BN3,BN4,BV2,BN5,BN6,BN8] we’ve been studying quantum invariants
related to the Lie algebra 𝑠𝑙 𝜖2+, the 4-dimensional Lie algebra with generators 𝑦, 𝑏, 𝑎, 𝑥
and brackets

[𝑏, 𝑥] = 𝜖𝑥, [𝑏, 𝑦] = −𝜖 𝑦, [𝑏, 𝑎] = 0, [𝑎, 𝑥] = 𝑥, [𝑎, 𝑦] = −𝑦, [𝑥, 𝑦] = 𝑏 + 𝜖𝑎,

where 𝜖 is a scalar. The beauty of this algebra stems from the following:

• It is a “classical double” of a two-dimensional the Lie bialgebra ⟨𝑎, 𝑥⟩, with

[𝑎, 𝑥] = 𝑥, 𝛿(𝑎) = 0, 𝛿(𝑥) = 𝜖𝑥 ∧ 𝑎,

and hence quantization tools are available and are used below (e.g. [ES]).
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• At invertible 𝜖 it is isomorphic to 𝑠𝑙2 ⊕ ⟨𝑡⟩, where 𝑡 is a central element5. Quantum
topology tells us that the algebra 𝑠𝑙2 is related to the Jones polynomial. In fact, the
universal quantum invariant (see [La1,La2,Oh]) for the Lie algebra 𝑠𝑙2 is equivalent
to the coloured Jones polynomial of [Jo].

• At 𝜖 = 0 it becomes the diamond Lie algebra ⋄, a solvable algebra in which com-
putations are easier. The algebra ⋄ is the semi-direct product of the unique non-
commutative 2D Lie algebra 𝔞 with its dual, and quantum topology tells us that it
is related to the Alexander polynomial [BN1,BD].

The last two facts taken together tell us that the Alexander polynomial is some limit of
the coloured Jones polynomial (originally conjectured [MM,Ro1] and proven by other
means [BNG]).

We can make this a bit more explicit. By using the Drinfel’d quantum double con-
struction [Dr] we find that the universal enveloping algebra U(𝑠𝑙 𝜖2+) has a quantization
𝑄𝑈, which has an 𝑅-matrix solving the Yang-Baxter equation (meaning, satisfying the
R3 move, in the appropriate sense). These are given by:

𝑄𝑈 = 𝐴⟨𝑦, 𝑏, 𝑎, 𝑥⟩
/(

[𝑏, 𝑎] = 0, [𝑏, 𝑥] = 𝜖𝑥, [𝑏, 𝑦] = −𝜖 𝑦,
[𝑎, 𝑥] = 𝑥, [𝑎, 𝑦] = −𝑦, 𝑥𝑦 − 𝑞𝑦𝑥 = 1−−ℏ(𝑏+𝜖 𝑎)

ℏ

)
,

where 𝐴⟨gens⟩ is the free associative algebra with generators gens, and 𝑞 = ℏ𝜖 , and

𝑅 =
∑︁

𝑚,𝑛≥0

𝑦𝑛𝑏𝑚 ⊗ (ℏ𝑎)𝑚(ℏ𝑥)𝑛
𝑚![𝑛]𝑞! (

where [𝑛]𝑞! =
𝑛∏

𝑘=1

1 − 𝑞𝑘
1 − 𝑞 is a “quantum factorial”

)
.

Thus there is an associated universal quantum invariant of knots 𝑍𝜖 (𝐾) ∈ 𝑄𝑈
(which, as stated, is equivalent to the coloured Jones polynomial). In our talks and
papers we show that 𝑍𝜖 can be expanded as a power series in 𝜖 , that at 𝜖 = 0 it is
equivalent to the Alexander polynomial, and that in general, the coefficient 𝑍 (𝑘 ) of 𝜖 𝑘

in 𝑍𝜖 can be computed in polynomial time and is homomorphic, meaning that it leads
to an “algebraic knot theory” in the sense of (say) [BN7]. We also know that the excess
information in 𝑍 (𝑘 ) (beyond the information in {𝑍 (0) , . . . , 𝑍 (𝑘−1) }) is contained in a
single polynomial, 𝜌𝑘 . The first of these polynomials is 𝜌1 of this paper.

5 Via the isomorphism

(
1 0
0 −1

)
↔ 𝜖−1𝑏 + 𝑎,

(
0 1
0 0

)
↔ 𝑥,

(
0 0
1 0

)
↔ 𝜖−1𝑦, and 𝑡 ↔ 𝑏 − 𝜖𝑎.
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But how did we arrive at the specific formulas of this paper? As often seen with
quantizations, 𝑄𝑈 is isomorphic (though only as an algebra, not as a Hopf algebra)
with U(𝑠𝑙 𝜖2+), and the latter can be represented into the Heisenberg algebra

H = 𝐴⟨𝑝, 𝑥⟩/([𝑝, 𝑥] = 1)

via
𝑦 → −𝑡 𝑝 − 𝜖 · 𝑥𝑝2, 𝑏 → 𝑡 + 𝜖 · 𝑥𝑝, 𝑎 → 𝑥𝑝, 𝑥 → 𝑥,

(abstractly, 𝑠𝑙 𝜖2+ acts on its Verma moduleU(𝑠𝑙 𝜖2+)/(U(𝑠𝑙 𝜖2+)⟨𝑦, 𝑎, 𝑏 − 𝜖𝑎 − 𝑡⟩) � Q[𝑥]
by differential operators, namely viaH). So𝑄𝑈’s 𝑅-matrix can be expanded in powers
of 𝜖 and pushed to U(𝑠𝑙 𝜖2+) and on to H, resulting in R = R0(1 + 𝜖R1 + · · · ), with
R0 = 𝑡 (𝑥𝑝⊗1−𝑥⊗𝑝) and R1 a quartic polynomial in 𝑝 and 𝑥. Now all the computations
for 𝜌1 can be carried out by pushing around a rather small number of 𝑝’s and 𝑥’s (at
most 4), and this can be done using the rules

(𝑝 ⊗ 1)R0 = R0(𝑡 (𝑝 ⊗ 1) + (1 − 𝑡 ) (1 ⊗ 𝑝)),
(1 ⊗ 𝑝)R0 = R0(1 ⊗ 𝑝),

which, after setting 𝑇 = 𝑡 , must remind the reader of Equation (1.1). When all the dust
settles, the resulting formulas are similar to the ones in Equations (1.4) and (1.5) (but
only similar, because we applied some ad hoc cosmetics to make the formulas appear
nicer).

There are some morals to this story:

(1) The definition of 𝜌1 in Section 1 and the proofs of its invariance in Section 3
are clearly much simpler than the origin story, as outlined above. So quite
clearly, we still don’t understand 𝜌1. There ought to be a room for it directly
within topology, which does not require that one would know anything about
quantum algebra. (And better if that room is large enough to accommodate
morals (2) and (6) below).

(2) Like there is 𝜌1, there are 𝜌𝑘 . The origin story tells us that 𝜌𝑘 should have a
formula as a summation over choices of 𝑘-tuples of features of the knot (cross-
ings and rotations), just as the formula for 𝜌1 is a single summation over these
features. The summand for 𝜌𝑘 will be a degree 2𝑘 polynomial in the Green
function 𝑔𝛼𝛽 (compare with (1.4), which is quadratic). As a 𝑘-fold summation,
after inverting 𝐴, 𝜌𝑘 should be computable in 𝑂 (𝑛𝑘) additions and multiplic-
ations of polynomials in 𝑇 , where 𝑛 is the crossing number.

(3) These 𝜌𝑘 should be equivalent to the invariants in our earlier works [BV1,BV3,
BN2,BN3,BN4,BV2,BN5,BN6,BN8].
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(4) These 𝜌𝑘 should be equivalent to the invariants studied earlier by Rozansky
and Overbay [Ro1, Ro2, Ro3, Ov], as their quantum origin is essentially the
same (though strictly speaking, we have not written proofs of that, and nor-
malizations may differ). Our formulas are significantly simpler and faster to
compute than the Rozansky-Overbay formulas, and in our language it is easier
to see the behaviour of 𝜌1 under mirror reflection (see Section 2.3).

(5) Like the Rozansky-Overbay invariants, 𝜌𝑘 should be equivalent to the “higher
diagonals” for the Melvin-Morton expansion (e.g. [Ro3]) and should be dom-
inated by the “loop expansion” of the Kontsevich integral [Kr,GR].

(6) The quantum algebra story extends to other Lie algebras, beyond 𝑠𝑙2. So there
should be variants 𝜌𝔤

𝑘
of 𝜌𝑘 at least for every semisimple Lie algebra 𝔤, given

by more or less similar formulas. Quantum algebra suggests that 𝜌𝔤
𝑘

should be
a polynomial in as many variables as the rank of 𝔤, and should in general be
stronger than the “base” 𝜌𝑘 . We have not seriously explored 𝜌𝔤

𝑘
yet, though

some preliminary work was done by Schaveling [Sch].

(7) It appears that 𝑄𝑈 has interesting traces and therefore that there should be a
link version of 𝜌1. We have not pursued this formally.

(8) 𝑄𝑈 has a co-product and an antipode, and so the universal tangle invari-
ant associated with 𝑄𝑈 has formulas for strand reversal and strand doubling
(e.g. [BV3, BN6]). This implies (e.g., by following the ideas of [BN7]) that
there should be formulas for 𝜌1 that start with a Seifert surface for the knot.
We are pursuing such formulas now; we already know that the degree of 𝜌1 is
bounded by 2𝑔, where 𝑔 is the genus of a knot [BV3].

(9) For the same reasons, for ribbon knots 𝜌1 should have a formula computable
from a ribbon presentation, and its values might be restricted in a manner
similar to the Fox-Milnor condition [FM]. We are pursuing this now.

(10) The coloured Jones polynomial is invariant under mutation so we expect 𝜌1
to likewise be invariant under mutation (and indeed, also 𝜌𝑘), yet we do not
have a direct proof of that yet. Note that we can expect 𝜌𝔤

𝑘
for higher-rank 𝔤 to

no longer be invariant under mutation.
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