Roland: I wrote a small note on the central element $w=Y X+F(a)$ for some explicit $\mathrm{F}(\mathrm{a}, \mathrm{T}$,epsilon) computed in the attached mathematica file.
Effective use of w may very well simplify stitching dramatically.
For example $Y^{\wedge} n X^{\wedge} n=(w-F(a))(w-F(a-1)) \ldots(w-F(a-n+1))$
This is a way to hide epsilon from the commutation relations since now ONLY $X a=(a-1) X$ and $Y a=(a+1) Y$ are used.

Notes on the Mixed order alternative

By Roland van der Veen

February 18, 2018

1 The central element ω

$$
[X, a]=-\gamma X \quad[a, Y]=-\gamma Y \quad[X, Y]=\frac{A^{-1} T^{-1}-A T}{h}
$$

possible to $2\left\{\right.$ we set $\gamma=h=1$. Here $A=e^{-\epsilon a}=1-\epsilon a+\frac{\epsilon^{2} a^{2}}{2}$ and $X A=q A X$ and $A Y=q Y A$ recov $\gamma, 50$ with $q=e^{\epsilon}$. We are looking for a central element $\omega=Y X+F(a, T)$. It suffices to check $X \omega=\omega X$. Since $X F(a)=F(a-1) X$ we must have

$$
X \omega=X Y X+X F(a)=\left(Y X+A^{-1} T^{-1}-A T+F(a-1)\right) X=\left(\omega+A^{-1} T^{-1}-A T+F(a-1)-F(a)\right) X=\omega X
$$

Provided that F satisfies the difference equation

$$
F(a)-F(a-1)=A^{-1} T^{-1}-A T=e^{\epsilon a} T^{-1}-e^{-\epsilon a} T
$$

For $\epsilon=0$ we see that we must have $F(a)=\left(T^{-1}-T\right) a$. To deal with the general case we first solve the easier problem $g(a)-g(a-1)=A^{-1} T^{-1}=e^{\epsilon a} T^{-1}$. The easiest solution is $g(a)=\lambda e^{\epsilon a}$ where plugging in reveals $\lambda=\left(1-e^{-\epsilon}\right)^{-1}$ however this is not suitable for nilpotent ϵ. Looking at the $\epsilon=0$ case we might do better with a solution that starts like that. Let us now assume $\epsilon^{N}=0$ for some fixed $N \in \mathbb{N}$.

Our ansatz is $F(a)=\sum_{k=0}^{N-1} \frac{f_{k}(a)}{k!} \epsilon^{k}$. So for all $0 \leq k<N$ we should solve

$$
f_{k}(a)-f_{k}(a-1)=\left(T^{-1}-(-1)^{k} T\right) a^{k}
$$

Write $f_{k}(a)=\sum_{j=1}^{k+1} c_{k, j} a^{j}$ so that

$$
\begin{aligned}
f_{k}(a)-f_{k}(a-1)=\sum_{j=1}^{k+1} c_{k, j}\left(a^{j}-(a-1)^{j}\right) & =\sum_{j=1}^{k+1} c_{k, j} \sum_{i=0}^{j-1}\binom{j}{i}(-1)^{j-i+1} a^{i}= \\
\sum_{i=0}^{k} \sum_{j=i+1}^{k+1} c_{k, j}\binom{j}{i}(-1)^{j-i+1} a^{i} & =\left(T^{-1}-(-1)^{k} T\right) a^{k}
\end{aligned}
$$

This means that for all $i<k$ we have

$$
\sum_{j=i+1}^{k+1} c_{k, j}\binom{j}{i}(-1)^{j-i+1}=0 \quad c_{k, k+1}=\frac{T^{-1}-(-1)^{k} T}{k+1}
$$

For fixed k, finding the coefficient vector $c_{k}=\left(c_{k, 1}, \ldots, c_{k, k+1}\right)$ can be written in terms of the $(k+1) \times(k+1)$ matrix $M(k)$ with $M_{i, j}=\binom{j}{i}(-1)^{j-i+1} \delta_{j>i}$. We need to solve $M c_{k}=\left(0, . ., 0, T^{-1}-(-1)^{k} T\right)^{t}$, where the t means transpose. For example the value of $\omega=Y X+F(a)$ to order 4 in ϵ is, so $\epsilon^{5}=0,(N=5)$:

$$
\begin{aligned}
\omega= & Y X+F(a)=Y X+a\left(T^{-1}-T\right)+\frac{1}{2} a(a+1)\left(T^{-1}+T\right) \epsilon+\frac{1}{12} a(a+1)(2 a+1)\left(T^{-1}-T\right) \epsilon^{2} \\
& +\frac{1}{24} a^{2}(a+1)^{2}\left(T^{-1}+T\right) \epsilon^{3}+\frac{1}{720} a(a+1)(2 a+1)\left(3 a^{2}+3 a-1\right)\left(T^{-1}-T\right) \epsilon^{4}
\end{aligned}
$$

2 A new normal form

In our YAX algebra we may use the central elements T, ω to write every power series as $\sum_{n} P_{n}(a) X^{n}+Y^{n} Q_{n}(a)$. Here P_{n}, Q_{n} are power series (or just polynomials?) in a with coefficients polynomials in T, ω.

Using $Y X=\omega-F(a)$ we may rewrite

$$
Y^{m} X^{n}=\left\{\begin{array}{l}
Y^{m-n} \prod_{j=0}^{|m-n|-1}(\omega-F(a-j)) \text { if } m>n \\
\prod_{j=0}^{|m-n|-1}(\omega-F(a-j)) X^{n-m} \text { if } m \leq n
\end{array}\right.
$$

