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1 Asymmetric dequantizator

We seek an isomorphism between the algebras Uh,ε and U(gε)[[h]]. The algebra
Uh,ε is generated by x, ỹ, a, t subject to the relations

xa = (a− 1)x aỹ = ỹ(a− 1) xỹ = qỹx+
1− TA2

h

Here q = eεh and T = eth and A = e−εah as in Dror’s monoblog (with γ = 1).
The algebra U(gε)[[h]] has generators x, y, a, t subject to the relations

xa = (a− 1)x ay = y(a− 1) xy = yx− t+ 2εa

Notice that gε has a central ’Casimir’ element ω = yx + j(a) = xy + j(a − 1)
where j(a) = εa2 − (t − ε)a (we may add a constant to j of course). (Do
ω, t generate the center of U(gε)[[h]]?). To check this just write xω − ωx =
xyx+ xj(a)− yx2 − j(a)x = (−t+ 2εa+ j(a− 1)− j(a))x = 0 etc.

As a first step we make the presentation of Uh,ε more symmetric by the

substitution Y = 1
2T

− 1
2A−1ỹ. This simplifies the presentation of Uh,ε to

xa = (a− 1)x aY = Y (a− 1) xY = Y x+
e−εh

h
sinh(h(− t

2
+ εa))

Indeed, this follows from xA−1 = q−1A−1x and xY = x 1
2T

− 1
2A−1ỹ = q−1

2 T− 1
2A−1xỹ =

q−1

2 T− 1
2A−1(qỹx+ 1−TA2

h ) = Y x+ q−1

2h T
− 1

2A−1(1−TA2) = Y x+(hq)−1 sinh(h(− t
2+

εa)).
As the first two relations are identical it is reasonable to look for a ho-

momorphism D : Uh,ε → U(gε)[[h]] given by D(x) = x,D(a) = a and D(Y ) =
f(a, ω, t)y for some f . All we need to check is that [D(x), D(Y )] = e−εh sinh(h(− t

2+
εa)). We now find an f that makes this happen.

Using the Casimir element we rewrite the commutator as a difference:

[D(x), D(Y )] = xf(a)y−f(a)yx = f(a−1)xy−f(a)yx = f(a−1)(ω−j(a−1))−f(a)(ω−j(a)) = F (a−1)−F (a)

where F (a) = f(a)(ω − j(a)). To find D we just have to solve the equation

F (a − 1) − F (a) = e−εh

h sinh(h(− t
2 + εa)) which is not hard given the iden-

tity cosh(r) − cosh(s) = 2 sinh( r+s2 ) sinh( r−s2 ). We find a solution F (a) =

1



e−εh

h

cosh(h( ε−t2 +εa))+c(ω,t)

2 sinh −εh
2

for any central c. And since (formally) f = F/(ω− j)
also complete the definition of D if the inverse makes sense:

D(Y ) = fy =
e−εh

h

cosh(h( ε−t2 + εa)) + c(ω, t)

2 sinh(−εh
2 )(ω − j(a))

y

This formula makes sense as a formal power series if we choose c = − cosh(h
√

( t−ε2 )2 + εω).

Indeed, coshhu−coshhv
u2−v2 makes sense as a power series in u2, v2 and in this case

we set u = ε−t
2 + εa and v =

√
( t−ε2 )2 + εω. It’s not hard to see that u2 − v2 =

−ε(ω − j(a)). The additional −ε that appears here can be taken from the
sinh(−ε/2) term in the denominator. In conclusion, an explicit formula for a
dequantizator is:

Theorem 1. The homomorphism D : Uh,ε → U(gε)[[h]] is defined by x 7→
x, a 7→ a and

D(ỹ) = eh( t2−ε−εa)
cosh(h( ε−t2 + εa))− cosh(h

√
( t−ε2 )2 + εω)

h sinh(−εh
2 )(ω − εa2 + (t− ε)a)

y

and D(ỹ) = y mod h

Also, Chari-Pressley p.197 suggests to construct a Casimir for Uε to find
the inverse of D. It appears this can be done by solving more easy difference
equations.

2 Cartan-symmetric dequantizator

In this section we attempt to find a special dequantizator homomorphism D :
Uh,ε → U(gε)[[h]] with the additional property that Θ//D = D//θ. Here the Car-

tan involutions are θ : Uh,ε → Uh,ε given by Θ(ỹ, a, x̃, t) = (−B−1T
1
2 x̃,−a,−A−1T− 1

2 ỹ,−t)
(note the sign of the exponent of T ). with B = TA and θ : U(gε)[[h]] →
U(gε)[[h]] given by θ(y, a, x, t) = (−x,−a,−y,−t).

As we would like to use the same technique we need to know how ω is moved
by θ. θ(ω) = xy+ εa2− (t+ ε)a = ω− t. For this reason we may want to switch
to ω̄ = ω− t

2 = yx+ εa2− (t− ε)a− t
2 = yx+ j̄ as it is Cartan invariant, where

j̄ = εa2 − (t− ε)a− t
2

To avoid confusion we now use x̃, ỹ for the generators of Uh,ε with rela-

tions including x̃ỹ − qỹx̃ = (1 − TA2)/h = 1−eh(t−2εa)

h . To find D we as-
sume D(a) = a and D(t) = t. Now suppose D(x̃) = f(a, t, ω̄)x and D(ỹ) =

g(a, t, ω̄)y. From Θ//D//θ = D it follows that θ(D(Θ(x̃)) = θ(D(−A−1T− 1
2 ỹ)) =

AT
1
2 g(−a,−t)x = D(x̃) = f(a, t)x so f(a, t) = e−εahT

1
2 g(−a,−t). It remains

to find an expression for g.

D(x̃ỹ − qỹx̃) = fxgy − qgyfx = f(a)g(a− 1)xy − qg(a)f(a+ 1)yx

2



= f(a)g(a− 1)(ω̄ − j̄(a− 1))− qf(a+ 1)g(a)(ω̄ − j̄(a)) = G(a− 1)− qG(a)

if we set

G(a) = f(a+ 1)g(a)(ω̄ − j̄(a)) = e−ε(a+1)hT
1
2 g(−a− 1,−t)g(a, t)(ω̄ − j̄(a))

Or getting rid of the q:

D(x̃ỹ − qỹx̃) = G(a− 1)− qG(a) = eh( t2−εah)(H(a− 1)−H(a))

with H(a) = g(−a− 1,−t)g(a, t)(ω̄− j̄(a)) Our objective is to solve, first for H
and then for g:

eh( t2−εah)(H(a− 1)−H(a)) =
1− eh(t−2εa)

h

or equivalently:

H(a− 1)−H(a) = eh(− t
2 +εah) 1− eh(t−2εa)

h
=

2

h
sinh(h(− t

2
+ εa))

As in the previous section the solution is H(a) = 1
h

cosh(h( ε−t2 +εa))+c(ω̄,t)

sinh −εh
2

for any

central c. The c is chosen so that H(a)/(ω̄ − j̄(a)) makes sense as a series. As

before we try to write it as cosh(hu)−cosh(hv)
u2−v2 . More precisely set u = ε−t

2 + εa

and find v such that u2−v2 = −ε(ω̄− j̄(a)), we get v =
√

t2+ε2

4 + εω. Therefore

the following series makes sense:

H(a)

ω̄ − j̄(a)
=

1

h

cosh(h( ε−t2 + εa))− coshh(
√

t2+ε2

4 + εω)

sinh(−εh
2 )(ω̄ − j̄(a))

If we can find g such that P (a, t) = H(a)
ω̄−j̄(a)

= g(−a − 1,−t)g(a, t) then we

are done. Making the substitution c = a + 1
2 and γ(c, t) = g(c − 1

2 , t) and
Q(c, t) = P (a− 1

2 , t) we get Q(c, t) = γ(c, t)γ(−c,−t). Since Q(c, t) = Q(−c,−t)
(why?) we find a solution γ(c, t) =

√
Q(c, t) and hence g(a, t) =

√
Q(a+ 1

2 ), t.

Other solutions may be obtained by multiplying γ with multiplicatively odd
functions.
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