Finding a dequantizator

November 6, 2017

1 Asymmetric dequantizator

We seek an isomorphism between the algebras $U_{h, \epsilon}$ and $U\left(\mathfrak{g}_{\epsilon}\right)[[h]]$. The algebra $U_{h, \epsilon}$ is generated by x, \tilde{y}, a, t subject to the relations

$$
x a=(a-1) x \quad a \tilde{y}=\tilde{y}(a-1) \quad x \tilde{y}=q \tilde{y} x+\frac{1-T A^{2}}{h}
$$

Here $q=e^{\epsilon h}$ and $T=e^{t h}$ and $A=e^{-\epsilon a h}$ as in Dror's monoblog (with $\gamma=1$).
The algebra $U\left(\mathfrak{g}_{\epsilon}\right)[[h]]$ has generators x, y, a, t subject to the relations

$$
x a=(a-1) x \quad a y=y(a-1) \quad x y=y x-t+2 \epsilon a
$$

Notice that \mathfrak{g}_{ϵ} has a central 'Casimir' element $\omega=y x+j(a)=x y+j(a-1)$ where $j(a)=\epsilon a^{2}-(t-\epsilon) a$ (we may add a constant to j of course). (Do ω, t generate the center of $U\left(\mathfrak{g}_{\epsilon}\right)[[h]]$?). To check this just write $x \omega-\omega x=$ $x y x+x j(a)-y x^{2}-j(a) x=(-t+2 \epsilon a+j(a-1)-j(a)) x=0$ etc.

As a first step we make the presentation of $U_{h, \epsilon}$ more symmetric by the substitution $Y=\frac{1}{2} T^{-\frac{1}{2}} A^{-1} \tilde{y}$. This simplifies the presentation of $U_{h, \epsilon}$ to

$$
x a=(a-1) x \quad a Y=Y(a-1) \quad x Y=Y x+\frac{e^{-\epsilon h}}{h} \sinh \left(h\left(-\frac{t}{2}+\epsilon a\right)\right)
$$

Indeed, this follows from $x A^{-1}=q^{-1} A^{-1} x$ and $x Y=x \frac{1}{2} T^{-\frac{1}{2}} A^{-1} \tilde{y}=\frac{q^{-1}}{2} T^{-\frac{1}{2}} A^{-1} x \tilde{y}=$ $\frac{q^{-1}}{2} T^{-\frac{1}{2}} A^{-1}\left(q \tilde{y} x+\frac{1-T A^{2}}{h}\right)=Y x+\frac{q^{-1}}{2 h} T^{-\frac{1}{2}} A^{-1}\left(1-T A^{2}\right)=Y x+(h q)^{-1} \sinh \left(h\left(-\frac{t}{2}+\right.\right.$ $\epsilon a)$).

As the first two relations are identical it is reasonable to look for a homomorphism $D: U_{h, \epsilon} \rightarrow U\left(\mathfrak{g}_{\epsilon}\right)[[h]]$ given by $D(x)=x, D(a)=a$ and $D(Y)=$ $f(a, \omega, t) y$ for some f. All we need to check is that $[D(x), D(Y)]=e^{-\epsilon h} \sinh \left(h\left(-\frac{t}{2}+\right.\right.$ $\epsilon a)$). We now find an f that makes this happen.

Using the Casimir element we rewrite the commutator as a difference:
$[D(x), D(Y)]=x f(a) y-f(a) y x=f(a-1) x y-f(a) y x=f(a-1)(\omega-j(a-1))-f(a)(\omega-j(a))=F(a-1)-F(a)$
where $F(a)=f(a)(\omega-j(a))$. To find D we just have to solve the equation $F(a-1)-F(a)=\frac{e^{-c h}}{h} \sinh \left(h\left(-\frac{t}{2}+\epsilon a\right)\right)$ which is not hard given the identity $\cosh (r)-\cosh (s)=2 \sinh \left(\frac{r+s}{2}\right) \sinh \left(\frac{r-s}{2}\right)$. We find a solution $F(a)=$
$\frac{e^{-\epsilon h}}{h} \frac{\cosh \left(h\left(\frac{\epsilon-t}{2}+\epsilon a\right)\right)+c(\omega, t)}{2 \sinh \frac{-\epsilon h}{2}}$ for any central c. And since (formally) $f=F /(\omega-j)$ also complete the definition of D if the inverse makes sense:

$$
D(Y)=f y=\frac{e^{-\epsilon h}}{h} \frac{\cosh \left(h\left(\frac{\epsilon-t}{2}+\epsilon a\right)\right)+c(\omega, t)}{2 \sinh \left(\frac{-\epsilon h}{2}\right)(\omega-j(a))} y
$$

This formula makes sense as a formal power series if we choose $c=-\cosh \left(h \sqrt{\left(\frac{t-\epsilon}{2}\right)^{2}+\epsilon \omega}\right)$. Indeed, $\frac{\cosh h u-\cosh h v}{u^{2}-v^{2}}$ makes sense as a power series in u^{2}, v^{2} and in this case we set $u=\frac{\epsilon-t}{2}+\epsilon a$ and $v=\sqrt{\left(\frac{t-\epsilon}{2}\right)^{2}+\epsilon \omega}$. It's not hard to see that $u^{2}-v^{2}=$ $-\epsilon(\omega-j(a))$. The additional $-\epsilon$ that appears here can be taken from the $\sinh (-\epsilon / 2)$ term in the denominator. In conclusion, an explicit formula for a dequantizator is:

Theorem 1. The homomorphism $D: U_{h, \epsilon} \rightarrow U\left(\mathfrak{g}_{\epsilon}\right)[[h]]$ is defined by $x \mapsto$ $x, a \mapsto a$ and

$$
D(\tilde{y})=e^{h\left(\frac{t}{2}-\epsilon-\epsilon a\right)} \frac{\cosh \left(h\left(\frac{\epsilon-t}{2}+\epsilon a\right)\right)-\cosh \left(h \sqrt{\left(\frac{t-\epsilon}{2}\right)^{2}+\epsilon \omega}\right)}{h \sinh \left(\frac{-\epsilon h}{2}\right)\left(\omega-\epsilon a^{2}+(t-\epsilon) a\right)} y
$$

and $D(\tilde{y})=y \bmod h$
Also, Chari-Pressley p. 197 suggests to construct a Casimir for U_{ϵ} to find the inverse of D. It appears this can be done by solving more easy difference equations.

2 Cartan-symmetric dequantizator

In this section we attempt to find a special dequantizator homomorphism \mathbb{D} : $U_{h, \epsilon} \rightarrow U\left(\mathfrak{g}_{\epsilon}\right)[[h]]$ with the additional property that $\Theta / / \mathbb{D}=\mathbb{D} / / \theta$. Here the Cartan involutions are $\theta: U_{h, \epsilon} \rightarrow U_{h, \epsilon}$ given by $\Theta(\tilde{y}, a, \tilde{x}, t)=\left(-B^{-1} T^{\frac{1}{2}} \tilde{x},-a,-A^{-1} T^{-\frac{1}{2}} \tilde{y},-t\right)$ (note the sign of the exponent of T). with $B=T A$ and $\theta: U\left(\mathfrak{g}_{\epsilon}\right)[[h]] \rightarrow$ $U\left(\mathfrak{g}_{\epsilon}\right)[[h]]$ given by $\theta(y, a, x, t)=(-x,-a,-y,-t)$.

As we would like to use the same technique we need to know how ω is moved by $\theta . \theta(\omega)=x y+\epsilon a^{2}-(t+\epsilon) a=\omega-t$. For this reason we may want to switch to $\bar{\omega}=\omega-\frac{t}{2}=y x+\epsilon a^{2}-(t-\epsilon) a-\frac{t}{2}=y x+\bar{j}$ as it is Cartan invariant, where $\bar{j}=\epsilon a^{2}-(t-\epsilon) a-\frac{t}{2}$

To avoid confusion we now use \tilde{x}, \tilde{y} for the generators of $U_{h, \epsilon}$ with relations including $\tilde{x} \tilde{y}-q \tilde{y} \tilde{x}=\left(1-T A^{2}\right) / h=\frac{1-e^{h(t-2 \epsilon a)}}{h}$. To find \mathbb{D} we assume $\mathbb{D}(a)=a$ and $\mathbb{D}(t)=t$. Now suppose $\mathbb{D}(\tilde{x})=f(a, t, \bar{\omega}) x$ and $D(\tilde{y})=$ $g(a, t, \bar{\omega}) y$. From $\Theta / / \mathbb{D} / / \theta=\mathbb{D}$ it follows that $\theta\left(\mathbb{D}(\Theta(\tilde{x}))=\theta\left(\mathbb{D}\left(-A^{-1} T^{-\frac{1}{2}} \tilde{y}\right)\right)=\right.$ $A T^{\frac{1}{2}} g(-a,-t) x=\mathbb{D}(\tilde{x})=f(a, t) x$ so $f(a, t)=e^{-\epsilon a h} T^{\frac{1}{2}} g(-a,-t)$. It remains to find an expression for g.

$$
\mathbb{D}(\tilde{x} \tilde{y}-q \tilde{y} \tilde{x})=f x g y-q g y f x=f(a) g(a-1) x y-q g(a) f(a+1) y x
$$

$$
=f(a) g(a-1)(\bar{\omega}-\bar{j}(a-1))-q f(a+1) g(a)(\bar{\omega}-\bar{j}(a))=G(a-1)-q G(a)
$$

if we set

$$
G(a)=f(a+1) g(a)(\bar{\omega}-\bar{j}(a))=e^{-\epsilon(a+1) h} T^{\frac{1}{2}} g(-a-1,-t) g(a, t)(\bar{\omega}-\bar{j}(a))
$$

Or getting rid of the q :

$$
\mathbb{D}(\tilde{x} \tilde{y}-q \tilde{y} \tilde{x})=G(a-1)-q G(a)=e^{h\left(\frac{t}{2}-\epsilon a h\right)}(H(a-1)-H(a))
$$

with $H(a)=g(-a-1,-t) g(a, t)(\bar{\omega}-\bar{j}(a))$ Our objective is to solve, first for H and then for g :

$$
e^{h\left(\frac{t}{2}-\epsilon a h\right)}(H(a-1)-H(a))=\frac{1-e^{h(t-2 \epsilon a)}}{h}
$$

or equivalently:

$$
H(a-1)-H(a)=e^{h\left(-\frac{t}{2}+\epsilon a h\right)} \frac{1-e^{h(t-2 \epsilon a)}}{h}=\frac{2}{h} \sinh \left(h\left(-\frac{t}{2}+\epsilon a\right)\right)
$$

As in the previous section the solution is $H(a)=\frac{1}{h} \frac{\cosh \left(h\left(\frac{\epsilon-t}{2}+\epsilon a\right)\right)+c(\bar{\omega}, t)}{\sinh \frac{-\epsilon h}{2}}$ for any central c. The c is chosen so that $H(a) /(\bar{\omega}-\bar{j}(a))$ makes sense as a series. As before we try to write it as $\frac{\cosh (h u)-\cosh (h v)}{u^{2}-v^{2}}$. More precisely set $u=\frac{\epsilon-t}{2}+\epsilon a$ and find v such that $u^{2}-v^{2}=-\epsilon(\bar{\omega}-\bar{j}(a))$, we get $v=\sqrt{\frac{t^{2}+\epsilon^{2}}{4}+\epsilon \omega}$. Therefore the following series makes sense:

$$
\frac{H(a)}{\bar{\omega}-\bar{j}(a)}=\frac{1}{h} \frac{\cosh \left(h\left(\frac{\epsilon-t}{2}+\epsilon a\right)\right)-\cosh h\left(\sqrt{\left.\frac{t^{2}+\epsilon^{2}}{4}+\epsilon \omega\right)}\right.}{\sinh \left(\frac{-\epsilon h}{2}\right)(\bar{\omega}-\bar{j}(a))}
$$

If we can find g such that $P(a, t)=\frac{H(a)}{\bar{\omega}-\bar{j}(a)}=g(-a-1,-t) g(a, t)$ then we are done. Making the substitution $c=a+\frac{1}{2}$ and $\gamma(c, t)=g\left(c-\frac{1}{2}, t\right)$ and $Q(c, t)=P\left(a-\frac{1}{2}, t\right)$ we get $Q(c, t)=\gamma(c, t) \gamma(-c,-t)$. Since $Q(c, t)=Q(-c,-t)$ (why?) we find a solution $\gamma(c, t)=\sqrt{Q(c, t)}$ and hence $g(a, t)=\sqrt{Q\left(a+\frac{1}{2}\right), t}$. Other solutions may be obtained by multiplying γ with multiplicatively odd functions.

