The 3D Theorems

Hour 72 on April 8， 2022.

There＇s also a handout at http： ／／drorbn．net／2122－257／ap／ 3DTheorems．pdf

Goal．

Gauss＇and Stokes＇theorems：

$$
\int_{D} \operatorname{div} G d V=\int_{\partial D} G \cdot n d A \quad \int_{S}(\operatorname{curl} \mid F) \cdot n d A=\int_{\partial S} F \cdot T d s
$$

where
－$D \subset \mathbb{R}^{3}$ is a domain（a compact oriented 3D manifold with boundary）and $S \subset \mathbb{R}^{3}$ is a surface（a compact oriented 2D manifold with boundary）．
－F and G are vector fields．
－n is the positive unit normal to $\partial D / S$ ．
－T is the positive unit tangent to ∂S ．
－$d V$ is the 3D volume form on $D, d A$ the 2D volume form on $\partial D / S$ （＂Area＂），and $d s$ is the 1D volume form on ∂S（＂arc length＂）．

Reminder．

$\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right) \times\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)=\left(\begin{array}{l}u_{2} v_{3}-u_{3} v_{2} \\ u_{3} v_{1}-u_{1} v_{3} \\ u_{1} v_{2}-u_{2} v_{1}\end{array}\right)$ is the vector perpendicular to both u and v
whose length is the area of the parallelogram generated by u and v ，and if that is not 0 ，then $(u, v, u \times v)$ make a positive basis．

Note．The area of a parallelogram is given by

$$
\begin{aligned}
& A=|u| \cdot|v| \cdot \sin \theta \\
& = \pm|u| \cdot|v| \cdot \sqrt{1-\cos ^{2} \theta}= \pm \sqrt{|u|^{2}|v|^{2}-\langle u, v\rangle^{2}}
\end{aligned}
$$

if you remember that $\cos \theta=\frac{\langle u, v\rangle}{|u| \cdot v \mid}$ ．

Recall

That in \mathbb{R}^{3} ，

via $\omega_{f}^{0}=f, \omega_{F}^{1}=F_{1} d x+F_{2} d y+F_{3} d z, \omega_{G}^{2}=G_{1} d y \wedge d z+G_{2} d z \wedge d x+G_{3} d x \wedge d y$ ， and $\omega_{g}^{3}=g d x \wedge d y \wedge d z$ ．

Some Small Print．

－The Final Exam will take place on Wednesday April 27，7－10pm in person at EX200
－Our TAs Sebastian and Shuyang will hold extra pre－exam office hours，in their usual zoom rooms．Sebastian on Wednesday April 20 and Friday April 22 at 11 am－1pm at Sebastian＇s Zoom（password vchat），and Shuyang on Monday，Tuesday，and Wednesday April $5-27$ at $11 \mathrm{am}-1 \mathrm{pm}$ at Shuyang＇s Zoom（password vchat）．
－I will hold my regular office hours on Tuesday April 12，at 9：30－10：30am，I will skip my regular office hours on April 19 and 26 ，and will hold extra office hours on Monday，Tuesday，and Wednesday April $25-27 \quad 1: 30-4 \mathrm{pm}$ ．All these in person at BA 6178 and online ttp：／／drorbn．net／vchat．
－Material：Everything excluding the material on Maxwell equations，with very light further emphasis on the material not covered in the previous term tests．Very roughly，one third of the questions will come straight from class material，one third from HW，and the last previous term tests．Very res
third will be fresh questions．
－No outside material will be allowed other than stationery，minimal hydration and snacks，and stuffed animals．
－The format will be＂Solve 7 of 7 ＂，or maybe＂ 6 of 6 ＂or＂ 8 of 8 ＂，in 3 hours．
－To prepare：Consider last year＇s final assessment and last year＇s＂reject＂questions，yet bear in mind that these are all＂fresh＂question
as last year the test was online．Much more important：make sure that you understand every single bit of class material！
－More，more to date，and practice questions at http：／／drorbn．net／2122－257／ap／Final－Info．pdf

Volumes．

Recall，＂the volume form＂$d V$（ or $d A$ or $d s / d \ell$ ）on M is the multiple of the orientation form which when fed with a positive orthonormal basis of $T_{p} M$（at any $p \in M$ ）outputs 1 ．For a 3D $D \subset \mathbb{R}^{3}$ ，this is $d V=d x \wedge d y \wedge d z$ ．If $S \subset \mathbb{R}^{3}$ is 2D and n is its positive unit normal，we have

$$
\begin{aligned}
& d A(u, v)=\left|\begin{array}{lll}
- & u & - \\
- & v & - \\
- & n & -
\end{array}\right|=(u \times v) \cdot n \\
&=\left(n_{1} d y \wedge d z+n_{2} d z \wedge d x+n_{3} d x \wedge d y\right)(u, v)
\end{aligned}
$$

so $d A=n_{1} d y \wedge d z+n_{2} d z \wedge d x+n_{3} d x \wedge d y$ ．
Example．On $S^{2}, d A=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$ ，as seen before．

Aside．

$d A(u, v)=(u \times v) \cdot n= \pm|u \times v|= \pm \sqrt{|u|^{2}|v|^{2}-\langle u, v\rangle^{2}}$ so we can compute surface area as follows，if S is the image of an orientation preserving 2－cube c ：

$$
\begin{aligned}
\operatorname{Area}(S)=\int_{S} d A=\int_{1^{2}} c^{*}(d A)=\int_{1^{2}} d A\left(c_{*} e_{1}, c_{*} e_{2}\right) \\
\qquad \int_{1^{2}} d A\left(\partial_{1} c, \partial_{2} c\right)=\int_{1^{2}} \sqrt{\left|\partial_{1} c\right|^{2}\left|\partial_{2} c\right|^{2}-\left\langle\partial_{1} c, \partial_{2} c\right\rangle^{2}}
\end{aligned}
$$

Claim 1．On an oriented curve in $\mathbb{R}^{3}, \omega_{F}^{1}=(T \cdot F) d s$ ．
Proof．Compute both sides on T and get $T \cdot F$ ．
Claim 2．On an oriented surface S in $\mathbb{R}^{3}, \omega_{G}^{2}=(G \cdot n) d A$ ．
Proof．Compute both sides on (u, v) ，a positive orthonormal basis of $T_{p} S$ ：

$$
\omega_{G}^{2}(u, v)=G \cdot(u \times v)=(G \cdot n)|u \times v|=(G \cdot n) d A(u, v) .
$$

Claim 3．On an oriented domain D in $\mathbb{R}^{3}, \omega_{g}^{3}=g d V$ ．
Proof．Of course

The 3D Theorems.

With all that,

$$
\begin{gathered}
\int_{D} d \omega_{G}^{2}=\int_{\partial D} \omega_{G}^{2} \Longrightarrow \int_{D} \operatorname{div} G d V=\int_{\partial D} G \cdot n d A \\
\int_{S} d \omega_{F}^{1}=\int_{\partial S} \omega_{F}^{1} \Longrightarrow \int_{S}(\text { curl } F) \cdot n d A=\int_{\partial S} F \cdot T d s
\end{gathered}
$$

and that's all, for now!

There's so much more, and I wish we had the time. Anyway,
Good luck with the final!

Have a wonderful summer!

Have a wonderful year, next year!

