Dror Bar-Natan: Classes: 2021-22: MAT 1350 Knot Theory: Tentative Plan	http://drorbn.net/AcademicPensieve/Classes/21-1350-KnotTheory/ Better initiated July 1, 2021; modified Saturday 11 th September, 2021, 6:30am xxxed!
First class on Friday September 10. Reading week is after	initiated July 1, 2021; modified Saturday 11 th September, 2021, 6:30am waxed! Lecture 19. Γ calculus and the Alexander polynomial. \rightarrow R4.
Lecture 24. Regrets in blue, gaps in red.	Lecture 20. hR_{ϵ} . Gaussian integration.
Topics in Algebraic Topology I: Algebraic Knot Theory and	Lecture 21. Perturbation theory for Gaussian integration.
Computation. The destination will be "a poly-time computable strong knot invariant with good algebraic properties". But you will be taking the course for the journey, not for the destination: What are knots and what are some of the problems around them? Why care about "invariants with good algebraic properties"? What is the "Yang-Baxter equation"? What	Lecture 22. Perturbation theory for Gaussian compositions.
	Lecture 23. Implementation.
	Lecture 24. The Rozansky-Overbay invariants.
	Lecture 25. CU_0 , QU_0 , and the QU_0 -calculus.
	Lecture 26. Genus using QU_0 .
are "virtual tangles"? What are "Hopf algebras"? Why	Lecture 27. Fox-Milnor using QU_0 ?
would a topologist care about computations in Heisenberg	Lecture 28. CU_{ϵ} , Wigner contractions, solvable approxima-
algebras more than most physicists? How does Gaussian integration, and how do Feynman diagrams, arise in pure	tion.
algebra? What is the "Drinfel'd Double Procedure"? Are we there yet?	Lecture 29. OU tangles and the Drinfel'd Double procedure. A finite-dimensional example.
The professor for this class does not believe anything that	Lecture 30. QU_{ϵ} and P .
he does unless it is coded and the code runs. A useful life skill you will learn here is that even the incredibly abstract	Lecture 31. The rest of the QU_{ϵ} structure.
can become a computer program, often with no loss to its	Lecture 32. Implementation, verification, computation.
beauty.	Lecture 33. QU_{ϵ} and genus.
Lecture 1. Course Introduction.	Lecture 34. From QU_{ϵ} to hR_{ϵ} .
Lecture 2. Knots and the Kauffman bracket. \rightarrow R1.	Lecture 35. ?
<i>Lecture</i> 3. Mathematica and implementing the Kauffman bracket.	Lecture 36. ?
Following http://drorbn.net/syd3.	Regret 1. Khovanov homology.
Lecture 4. A faster Kauffman bracket program.	Regret 2. Khovanov homology for tangles.
Following http://drorbn.net/syd3, with ThinPosition from WG.nb.	Regret 3. Other algebraic structures near knot theory:
Lecture 5. Tangles and planar algebras. \rightarrow R2, \rightarrow R3.	(monoidal) categories, braid groups. Also mention contrac-
<i>Lecture</i> 6. Three basic problems: unknotting, genus, ribbon knots. Display a list of ribbon knots.	tion (circuit) algebras, meta-monoids, meta-Hopf-algebras, quandles,
Lecture 7. Aside: the Seifert algorithm.	<i>Regret</i> 4. Oh there's so much more on the Alexander polynomial!!!
Lecture 8. Tangles and the three basic problems.	
Lecture 9. The Yang-Baxter approach and the WG algebras.	
Lecture 10. Implementation.	
* 	

 $Lecture\ 11.$ Virtual tangles and rotational virtual tangles. Meta monoids.

 $Lecture\ 12.$ Quasi-triangular Hopf algebras and the Kerler algebra.

Lecture 13. Implementation.

Lecture 14. The Heisenberg algebra \mathbb{H} , hR_0 , and the PBW principle.

Lecture 15. Generating functions and hm.

Lecture 16. Gaussians and compositions.

Lecture 17. Implementation, testing.

Lecture 18. Yang-Baxter. An aside on the harmonic oscillator.