Over the base field \mathbb{Q}, recall that $s l_{2+}^{\epsilon}$ is the Lie algebra with generators $\{\mathbf{y}, \mathbf{b}, \mathbf{a}, \mathbf{x}\}$ and with brackets

$$
\begin{gathered}
{[\mathbf{a}, \mathbf{x}]=\mathbf{x}, \quad[\mathbf{b}, \mathbf{y}]=-\epsilon \mathbf{y}, \quad[\mathbf{a}, \mathbf{b}]=0, \quad[\mathbf{a}, \mathbf{y}]=-\mathbf{y},} \\
\\
{[\mathbf{b}, \mathbf{x}]=\epsilon \mathbf{x}, \quad[\mathbf{x}, \mathbf{y}]=\mathbf{b}+\epsilon \mathbf{a} .}
\end{gathered}
$$

Recall also that $s l_{2}$ is the Lie algebra of 2×2 matrices whose trace is 0 and with $[A, B]:=$ $A B-B A$. Note that if \mathfrak{a} and \mathfrak{b} are Lie algebras, then so is their direct sum $\mathfrak{a} \oplus \mathfrak{b}$, taken with the obvious bracket. Finally, a 1-dimensional vector space $\langle t\rangle$ is a Lie algebra (in only one way), with $[t, t]=0$.

Problem 1. Show that for $\epsilon \neq 0$ the Lie algebra $s l_{2+}^{\epsilon}$ is isomorphic to the direct sum $s l_{2} \oplus\langle t\rangle$. (Hint. What properties would the image of t in $s l_{2+}^{\epsilon}$ need to have?)

Problem 2. Show that for $\epsilon=0$ the Lie algebra $s l_{2+}^{0}$ is not a direct sum of smaller algebras.
(That's kind of unexpected, isn't it? You'd think that on a one-parameter path of Lie algebras some miracle could occur, and some Lie algebra in the middle of the path might have a decomposition into smaller ones even if the generic case is indecomposable. But what we see here is the opposite!)

