Problem. Make sense of the paragraph below and add enough details to make it intelligible.
If p is a prime, $G=D_{2 p}$ is the dihedral group with $2 p$ elements, Z is the knot invariant associated with $W G$, and K is a knot with n crossings, then $Z(K)$ is computable in time polynomial in n. Indeed only one of the conjugacy classes of G is interesting (call it C), and finding homomorphisms $\pi_{1}(K) \rightarrow G$ that map meridians to C amounts to solving systems of linear equations over the field \mathbb{Z} / p.
(In particular, we made fools of ourselves in class struggling to compute Z for $G=S_{3}=D_{6}$).

