MAT257 Term Test 1 Rejects

The following questions were a part of a question pool for the 2020-21 MAT257 Term Test 1, but at the end, they were not included.

1. If A is an interval, its closure is equal to the closure of its interior. Is this true for all subsets of \mathbb{R} ?
2. Prove that if $C \subset \mathbb{R}^{n}$ is a compact set and $f: C \rightarrow \mathbb{R}^{m}$ is continuous, then the graph of f, the set $\Gamma(f):=\{(x, f(x)): x \in C\}$, is compact.
3. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by $f(x)=\sum a_{i j} x_{i} x_{j}$, and let $y \in \mathbb{R}^{n}$. Find $D f(y)$.
4. We will say that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is "uniformly ϵ-near λ ", where λ is an invertible linear transformation, if $f(0)=0$ and

$$
\forall x_{1}, x_{2} \in \mathbb{R}^{n}, \quad\left|\lambda\left(x_{1}-x_{2}\right)-\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)\right| \leq \epsilon\left|x_{1}-x_{2}\right| .
$$

Prove that if $\epsilon>0$ is sufficiently small, then for every $y \in \mathbb{R}^{n}$ there is some $x \in \mathbb{R}^{n}$ such that $f(x)=y$.
5. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is tiny; namely, $f \in o(h)$. Show that f is differentiable at 0 . What is $f^{\prime}(0)$?
6. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $f(x, y)=\left(e^{x}+e^{y}, e^{x}+e^{-y}\right)$.
(a) Explain why every point $(a, b) \in \mathbb{R}^{2}$ has a neighborhood on which f is invertible.
(b) If $f(a, b)=(c, d)$, compute the differential of f^{-1} at (c, d).
7. We consider the equation $x+y+z=\sin x y z$ very near $x=y=z=0$, and we want to solve for z as a function of x and y. Show that this can be done and compute the partial derivatives of the solution with respect to x and to y.
8. Determine the interiors, exteriors, and boundaries of the subsets of \mathbb{R}^{2} given below:
(a) $A=\{(x, y): x, y \in \mathbb{Q}\}$.
(b) $B=\left\{(x, y): 0<x^{2}+y^{2}<1\right\}$.
(c) $C=\left\{(x, y): y<x^{2}\right\}$.
(d) $D=\left\{(x, y): y \leq x^{2}\right\}$.
9. Show that there is no neighborhood of 0 in which the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=$ $|x y|$ has continuous partial derivatives. Yet show that this f is differentiable at 0 .
10. A function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ satisfies $f(0)=(1,2)$ and $f^{\prime}(0)=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 1\end{array}\right)$, and a function $g: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} is given by $g(x, y)=(x+2 y+1,3 x y)$. Compute $(g \circ f)^{\prime}(0)$.
11. For some values of n and m, give an example of a continuously differentiable function $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ whose differential is 1-1 for every $a \in \mathbb{R}^{n}$, yet such that γ itself is not 1-1.
12. Determine the interiors, exteriors, and boundaries of the subsets of \mathbb{R}^{2} given below:
(a) $A=\{(x, y): x=0\}$.
(b) $B=\{(x, y): 0 \leq x<1\}$.
(c) $C=\{(x, y): 0 \leq x<1$ and $0 \leq y<1\}$.
(d) $D=\{(x, y): x \in \mathbb{Q}$ and $y>0\}$.
13. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called "rotation invariant" if for every $\theta, f \circ T_{\theta}=f$, where $T_{\theta}: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2} is the linear transformation given (in the standard basis) by the matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$. If a given $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable and rotation invariant, show that $D f(x, y)(-y, x)=0$ for every $(x, y) \in \mathbb{R}^{2}$.

