MAT257 Term Test 1 Rejects

The following questions were a part of a question pool for the 2020-21 MAT257 Term Test 1, but at the end, they were not included.

- 1. If A is an interval, its closure is equal to the closure of its interior. Is this true for all subsets of \mathbb{R} ?
- 2. Prove that if $C \subset \mathbb{R}^n$ is a compact set and $f: C \to \mathbb{R}^m$ is continuous, then the graph of f, the set $\Gamma(f) := \{(x, f(x)): x \in C\}$, is compact.
- 3. Let $A = (a_{ij})$ be an $n \times n$ matrix, let $f \colon \mathbb{R}^n \to \mathbb{R}$ be defined by $f(x) = \sum a_{ij} x_i x_j$, and let $y \in \mathbb{R}^n$. Find Df(y).
- 4. We will say that a function $f : \mathbb{R}^n \to \mathbb{R}^n$ is "uniformly ϵ -near λ ", where λ is an invertible linear transformation, if f(0) = 0 and

$$\forall x_1, x_2 \in \mathbb{R}^n$$
, $|\lambda(x_1 - x_2) - (f(x_1) - f(x_2))| \le \epsilon |x_1 - x_2|$.

Prove that if $\epsilon > 0$ is sufficiently small, then for every $y \in \mathbb{R}^n$ there is some $x \in \mathbb{R}^n$ such that f(x) = y.

- 5. A function $f : \mathbb{R}^n \to \mathbb{R}^n$ is tiny; namely, $f \in o(h)$. Show that f is differentiable at 0. What is f'(0)?
- 6. Define $f: \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x, y) = (e^x + e^y, e^x + e^{-y})$.
 - (a) Explain why every point $(a, b) \in \mathbb{R}^2$ has a neighborhood on which f is invertible.
 - (b) If f(a, b) = (c, d), compute the differential of f^{-1} at (c, d).
- 7. We consider the equation $x + y + z = \sin xyz$ very near x = y = z = 0, and we want to solve for z as a function of x and y. Show that this can be done and compute the partial derivatives of the solution with respect to x and to y.
- 8. Determine the interiors, exteriors, and boundaries of the subsets of \mathbb{R}^2 given below:
 - (a) $A = \{(x, y) : x, y \in \mathbb{Q}\}.$
 - (b) $B = \{(x, y): 0 < x^2 + y^2 < 1\}.$
 - (c) $C = \{(x, y) : y < x^2\}.$
 - (d) $D = \{(x, y) : y \le x^2\}.$
- 9. Show that there is no neighborhood of 0 in which the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by f(x, y) = |xy| has continuous partial derivatives. Yet show that this *f* is differentiable at 0.
- 10. A function $f: \mathbb{R}^3 \to \mathbb{R}^2$ satisfies f(0) = (1, 2) and $f'(0) = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \end{pmatrix}$, and a function $g: \mathbb{R}^2 \to \mathbb{R}^2$ is given by g(x, y) = (x + 2y + 1, 3xy). Compute $(g \circ f)'(0)$.

- 11. For some values of *n* and *m*, give an example of a continuously differentiable function $\gamma \colon \mathbb{R}^n \to \mathbb{R}^m$ whose differential is 1-1 for every $a \in \mathbb{R}^n$, yet such that γ itself is not 1-1.
- 12. Determine the interiors, exteriors, and boundaries of the subsets of \mathbb{R}^2 given below:
 - (a) $A = \{(x, y) : x = 0\}.$
 - (b) $B = \{(x, y) : 0 \le x < 1\}.$
 - (c) $C = \{(x, y): 0 \le x < 1 \text{ and } 0 \le y < 1\}.$
 - (d) $D = \{(x, y) : x \in \mathbb{Q} \text{ and } y > 0\}.$
- 13. A function $f: \mathbb{R}^2 \to \mathbb{R}$ is called "rotation invariant" if for every θ , $f \circ T_{\theta} = f$, where $T_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation given (in the standard basis) by the matrix $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. If a given $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable and rotation invariant, show that Df(x, y)(-y, x) = 0 for every $(x, y) \in \mathbb{R}^2$.