
Q1

Λ1(R3) is just the dual space of R3, which we will assign a dual basis (ϕ1, ϕ2, ϕ3).
It has dimension 3, so is isomorphic to R3. An isomorphism to R3 is given by

a1ϕ1 + a2ϕ2 + a3ϕ3 7→ (a1, a2, a3).

This is an isomorphism because every triple (a1, a2, a3) ∈ R3 corresponds to
some a1ϕ1 + a2ϕ2 + a3ϕ3 ∈ Λ1(V ), and vice versa. Also, Λ2(R3) has dimension(
3
2

)
= 3, with basis (ϕ2 ∧ ϕ3, ϕ3 ∧ ϕ1, ϕ1 ∧ ϕ2). (Conventionally we would use

ϕ1 ∧ ϕ3, but this is equal to −ϕ3 ∧ ϕ1 so it is equivalent.) We will use the
isomorphism

a1(ϕ2 ∧ ϕ3) + a2(ϕ3 ∧ ϕ1) + a3(ϕ1 ∧ ϕ2) 7→ (a1, a2, a3)

to R3. Then

(a1ϕ1 + a2ϕ2 + a3ϕ3) ∧ (b1ϕ1 + b2ϕ2 + b3ϕ3) = (a2b3 − a3b2)ϕ2 ∧ ϕ3 + (−a1b3 + a3b1)ϕ3 ∧ ϕ1

+ (a1b2 − a2b1)ϕ1 ∧ ϕ2,

which is mapped to (a2b3−a3b2,−a1b3 +a3b1, a1b2−a2b1) in R3 with the above
isomorphism. This is precisely the cross product (a1, a2, a3)× (b1, b2, b3) in R3.
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Q2

It was shown in class that L is orientation-preserving if and only if det(L) > 0.

a) The matrix of L1 is

[
−1 0
0 1

]
, which has det(L1) = −1, so it is orientation-

reversing.

b) L2 =

[
0 1
1 0

]
, which has det(L2) = −1, so L2 is orientation-reversing.

c) For (c) and (d), note the general rotation matrix by θ isRθ =

[
cos θ − sin θ
sin θ cos θ

]
,

with determinant cos2 θ+sin2 θ = 1, so all rotation matrices are orientation-
preserving. Thus L3 is orientation-preserving.

d) By the above, L4 is orientation-preserving.

e) By identifying (a, b) ∈ R2 with a + bi ∈ C, the matrix of L5 is L5 =[
1 0
0 −1

]
. det(L5) = −1, so it is orientation-reversing.

f) L6 =

0 0 1
1 0 0
0 1 0

, which has det(L6) = 1, so L6 is orientation-preserving.

g) L7 is just −1 times the identity matrix. Thus, its determinant is (−1)n,
so L7 is orientation-preserving if n is even and orientation-reversing if n
is odd.

h) The matrix of L8 is

L8 =

[
0 In
Im 0

]
,

where In and Im are the n× n and m×m identity matrices, respectively,
and 0 is a matrix of zeros. Note that permuting the rows of L8 by a
suitable permutation σ ∈ Sm+n results in the identity matrix, which has
determinant 1. Since the determinant is an alternating tensor, permuting
the rows by σ will change the sign of det(L8) by sign(σ), so det(L8) =
sign(σ). The desired σ is a m+n cycle applied m times “upward” to shift
Im to the top. An m+ n cycle has sign (−1)m+n+1, so

sign(σ) = ((−1)m+n+1)m

= (−1)m
2+m+mn

= (−1)mn.

The last line follows because either m or m + 1 is even, so m2 + m =
m(m + 1) is always even. Thus, sign(σ) = (−1)mn, so L8 is orientation-
preserving if mn is even and orientation-reversing if mn is odd.
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Q3

Let φ ∈ Λk(V ). Define ψk : Λn−k(V ) →
(
Λk(V )

)∗
by ψk(λ) = χ(φ ∧ λ). This

is a linear map because χ is a linear map and the wedge product is bilinear, so
their composition will be linear. In addition,

dim((Λk(V ))∗) = dim(Λk(V ))

=

(
n

k

)
=

(
n

n− k

)
= dim(Λn−k(V )),

so showing ψk is injective is enough to prove it is an isomorphism. Suppose
ψk(λ1) = ψk(λ2), so χ(φ ∧ λ1) = χ(φ ∧ λ2) for all φ ∈ Λk(V ). Since χ is an
isomorphism, this means φ∧λ1 = φ∧λ2, or φ∧ (λ1−λ2) = 0 for all φ. Writing
λ1 − λ2 =

∑
I aIωI using in the standard basis ωI , we see that if any aI 6= 0,

we could take φ = ωI and then φ∧ (λ1 − λ2) = aI 6= 0. Thus, λ1 = λ2, so ψk is
injective.
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Q4

a) For I ∈ nka, define Ic as the “complement” of I, i.e. the unique multi-
index in nn−ka such that I and Ic share no indices. It is unique because the
lengths of I and Ic sum to n, and they are both required to be increasing.
Also, define I + J to be the multi-index obtained by concatenating I and
J . Let ωI be the elementary alternating tensors with multi-index I. Then,
we claim that ∗(ωI) = (−1)σωIc , where σ ∈ Sn is the permutation that
reorders I + Ic ∈ nn to be increasing, is the desired isomorphism. This
is an isomorphism because every J ∈ nn−ka is uniquely determined by
Jc ∈ nka and vice versa.
We now evaluate ωI ∧ (∗ωJ). If J = I, then σ(I + Ic) = (1, 2, . . . , n) for
some σ, and

ωI ∧ (∗ωI) = (−1)σωI ∧ ωIc
= ((−1)σ)2ωn

= ωn,

since reordering the ϕi to be increasing introduces a factor of (−1)σ. If
J 6= I, ωJc will share some ϕk with ωI , and their wedge product will be
0. Thus,

ωI ∧ (∗ωJ) = δIJωn = 〈ωI , ωJ〉.

This is enough to show that λ ∧ (∗η) = 〈λ, η〉ωn for arbitrary alternating
tensors, since expanding them in the basis gives(∑

I

aIωI

)
∧

(∑
J

bJ ∗ (ωJ)

)
=
∑
I,J

aIbJωI ∧ (∗ωJ)

=
∑
I

aIbIωn

= 〈λ, η〉ωn.

Finally, this isomorphism is unique, because if λ ∧ (∗η) = 〈λ, η〉ωn for all
λ, η ∈ Λk(V ), we must have∑

I,J

aIbJωI ∧ (∗ωJ) =
∑
I

aIbIωn,

so comparing terms gives ωI ∧ (∗ωI) = ωn for all I. The only way to do
this is with the definition of ∗ given above, because mapping ∗(ωI) to any
other ωJ would result in a repetition in the wedge product, causing it to
be 0.

b) On the left is the original tensor, and on the right is what it gets mapped
to by ∗.
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ω1 ω23

ω2 −ω13

ω3 ω12

ω12 ω34

ω13 −ω24

ω14 ω23

ω23 ω14

ω24 −ω13

ω34 ω12

(2, 1, 3) and (1, 3, 2, 4) both require one transposition to order, and (2, 4, 1, 3)
requires three transpositions, so σ is odd and the sign is negated. The rest
require an even number of transpositions, so the sign is unaffected.

c) Since ∗ is linear, it suffices to show ∗ ◦ ∗(ωI) = (−1)k(n−k) for the elemen-
tary alternating tensors ωI . We will denote ∗ ◦ ∗ by ∗2. We see that

∗2(ωI) = ∗((−1)σ1ωIc)

= (−1)σ1(−1)σ2ωI

= (−1)NωI

since (Ic)c = I, so ∗2 is a scalar multiple of the identity map. Thus,

(∗2ωI) ∧ (∗ωI) = (−1)Nωn

= (−1)k(n−k)(∗ωI) ∧ (∗2ωI)
= (−1)k(n−k)ωn,

where the second line follows from the supercommutative property of the
wedge product, and the last line follows from the definition of ∗ applied
to ∗(ωI). Comparing lines 1 and 3, we see that N = k(n−k), so ∗2(ωI) =
(−1)k(n−k)ωI .
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