Q1

$\Lambda^{1}\left(\mathbb{R}^{3}\right)$ is just the dual space of \mathbb{R}^{3}, which we will assign a dual basis $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$. It has dimension 3 , so is isomorphic to \mathbb{R}^{3}. An isomorphism to \mathbb{R}^{3} is given by

$$
a_{1} \varphi_{1}+a_{2} \varphi_{2}+a_{3} \varphi_{3} \mapsto\left(a_{1}, a_{2}, a_{3}\right)
$$

This is an isomorphism because every triple $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ corresponds to some $a_{1} \varphi_{1}+a_{2} \varphi_{2}+a_{3} \varphi_{3} \in \Lambda^{1}(V)$, and vice versa. Also, $\Lambda^{2}\left(\mathbb{R}^{3}\right)$ has dimension $\binom{3}{2}=3$, with basis $\left(\varphi_{2} \wedge \varphi_{3}, \varphi_{3} \wedge \varphi_{1}, \varphi_{1} \wedge \varphi_{2}\right)$. (Conventionally we would use $\varphi_{1} \wedge \varphi_{3}$, but this is equal to $-\varphi_{3} \wedge \varphi_{1}$ so it is equivalent.) We will use the isomorphism

$$
a_{1}\left(\varphi_{2} \wedge \varphi_{3}\right)+a_{2}\left(\varphi_{3} \wedge \varphi_{1}\right)+a_{3}\left(\varphi_{1} \wedge \varphi_{2}\right) \mapsto\left(a_{1}, a_{2}, a_{3}\right)
$$

to \mathbb{R}^{3}. Then

$$
\begin{aligned}
\left(a_{1} \varphi_{1}+a_{2} \varphi_{2}+a_{3} \varphi_{3}\right) \wedge\left(b_{1} \varphi_{1}+b_{2} \varphi_{2}+b_{3} \varphi_{3}\right) & =\left(a_{2} b_{3}-a_{3} b_{2}\right) \varphi_{2} \wedge \varphi_{3}+\left(-a_{1} b_{3}+a_{3} b_{1}\right) \varphi_{3} \wedge \varphi_{1} \\
& +\left(a_{1} b_{2}-a_{2} b_{1}\right) \varphi_{1} \wedge \varphi_{2},
\end{aligned}
$$

which is mapped to $\left(a_{2} b_{3}-a_{3} b_{2},-a_{1} b_{3}+a_{3} b_{1}, a_{1} b_{2}-a_{2} b_{1}\right)$ in \mathbb{R}^{3} with the above isomorphism. This is precisely the cross product $\left(a_{1}, a_{2}, a_{3}\right) \times\left(b_{1}, b_{2}, b_{3}\right)$ in \mathbb{R}^{3}.

Q2

It was shown in class that L is orientation-preserving if and only if $\operatorname{det}(L)>0$.
a) The matrix of L_{1} is $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$, which has $\operatorname{det}\left(L_{1}\right)=-1$, so it is orientationreversing.
b) $L_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, which has $\operatorname{det}\left(L_{2}\right)=-1$, so L_{2} is orientation-reversing.
c) For (c) and (d), note the general rotation matrix by θ is $R_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, with determinant $\cos ^{2} \theta+\sin ^{2} \theta=1$, so all rotation matrices are orientationpreserving. Thus L_{3} is orientation-preserving.
d) By the above, L_{4} is orientation-preserving.
e) By identifying $(a, b) \in \mathbb{R}^{2}$ with $a+b i \in \mathbb{C}$, the matrix of L_{5} is $L_{5}=$ $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \cdot \operatorname{det}\left(L_{5}\right)=-1$, so it is orientation-reversing.
f) $L_{6}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$, which has $\operatorname{det}\left(L_{6}\right)=1$, so L_{6} is orientation-preserving.
g) L_{7} is just -1 times the identity matrix. Thus, its determinant is $(-1)^{n}$, so L_{7} is orientation-preserving if n is even and orientation-reversing if n is odd.
h) The matrix of L_{8} is

$$
L_{8}=\left[\begin{array}{c|c}
0 & I_{n} \\
\hline I_{m} & 0
\end{array}\right]
$$

where I_{n} and I_{m} are the $n \times n$ and $m \times m$ identity matrices, respectively, and 0 is a matrix of zeros. Note that permuting the rows of L_{8} by a suitable permutation $\sigma \in S_{m+n}$ results in the identity matrix, which has determinant 1. Since the determinant is an alternating tensor, permuting the rows by σ will change the sign of $\operatorname{det}\left(L_{8}\right)$ by $\operatorname{sign}(\sigma)$, so $\operatorname{det}\left(L_{8}\right)=$ $\operatorname{sign}(\sigma)$. The desired σ is a $m+n$ cycle applied m times "upward" to shift I_{m} to the top. An $m+n$ cycle has $\operatorname{sign}(-1)^{m+n+1}$, so

$$
\begin{aligned}
\operatorname{sign}(\sigma) & =\left((-1)^{m+n+1}\right)^{m} \\
& =(-1)^{m^{2}+m+m n} \\
& =(-1)^{m n}
\end{aligned}
$$

The last line follows because either m or $m+1$ is even, so $m^{2}+m=$ $m(m+1)$ is always even. Thus, $\operatorname{sign}(\sigma)=(-1)^{m n}$, so L_{8} is orientationpreserving if $m n$ is even and orientation-reversing if $m n$ is odd.

Q3

Let $\phi \in \Lambda^{k}(V)$. Define $\psi_{k}: \Lambda^{n-k}(V) \rightarrow\left(\Lambda^{k}(V)\right)^{*}$ by $\psi_{k}(\lambda)=\chi(\phi \wedge \lambda)$. This is a linear map because χ is a linear map and the wedge product is bilinear, so their composition will be linear. In addition,

$$
\begin{aligned}
\operatorname{dim}\left(\left(\Lambda^{k}(V)\right)^{*}\right) & =\operatorname{dim}\left(\Lambda^{k}(V)\right) \\
& =\binom{n}{k} \\
& =\binom{n}{n-k} \\
& =\operatorname{dim}\left(\Lambda^{n-k}(V)\right)
\end{aligned}
$$

so showing ψ_{k} is injective is enough to prove it is an isomorphism. Suppose $\psi_{k}\left(\lambda_{1}\right)=\psi_{k}\left(\lambda_{2}\right)$, so $\chi\left(\phi \wedge \lambda_{1}\right)=\chi\left(\phi \wedge \lambda_{2}\right)$ for all $\phi \in \Lambda^{k}(V)$. Since χ is an isomorphism, this means $\phi \wedge \lambda_{1}=\phi \wedge \lambda_{2}$, or $\phi \wedge\left(\lambda_{1}-\lambda_{2}\right)=0$ for all ϕ. Writing $\lambda_{1}-\lambda_{2}=\sum_{I} a_{I} \omega_{I}$ using in the standard basis ω_{I}, we see that if any $a_{I} \neq 0$, we could take $\phi=\omega_{I}$ and then $\phi \wedge\left(\lambda_{1}-\lambda_{2}\right)=a_{I} \neq 0$. Thus, $\lambda_{1}=\lambda_{2}$, so ψ_{k} is injective.

Q4

a) For $I \in \underline{n}_{a}^{k}$, define I^{c} as the "complement" of I, i.e. the unique multiindex in \underline{n}_{a}^{n-k} such that I and I^{c} share no indices. It is unique because the lengths of I and I^{c} sum to n, and they are both required to be increasing. Also, define $I+J$ to be the multi-index obtained by concatenating I and J. Let ω_{I} be the elementary alternating tensors with multi-index I. Then, we claim that $*\left(\omega_{I}\right)=(-1)^{\sigma} \omega_{I^{c}}$, where $\sigma \in S_{n}$ is the permutation that reorders $I+I^{c} \in \underline{n}^{n}$ to be increasing, is the desired isomorphism. This is an isomorphism because every $J \in \underline{n}_{a}^{n-k}$ is uniquely determined by $J^{c} \in \underline{n}_{a}^{k}$ and vice versa.
We now evaluate $\omega_{I} \wedge\left(* \omega_{J}\right)$. If $J=I$, then $\sigma\left(I+I^{c}\right)=(1,2, \ldots, n)$ for some σ, and

$$
\begin{aligned}
\omega_{I} \wedge\left(* \omega_{I}\right) & =(-1)^{\sigma} \omega_{I} \wedge \omega_{I^{c}} \\
& =\left((-1)^{\sigma}\right)^{2} \omega_{n} \\
& =\omega_{n}
\end{aligned}
$$

since reordering the φ_{i} to be increasing introduces a factor of $(-1)^{\sigma}$. If $J \neq I, \omega_{J^{c}}$ will share some φ_{k} with ω_{I}, and their wedge product will be 0 . Thus,

$$
\omega_{I} \wedge\left(* \omega_{J}\right)=\delta_{I J} \omega_{n}=\left\langle\omega_{I}, \omega_{J}\right\rangle
$$

This is enough to show that $\lambda \wedge(* \eta)=\langle\lambda, \eta\rangle \omega_{n}$ for arbitrary alternating tensors, since expanding them in the basis gives

$$
\begin{aligned}
\left(\sum_{I} a_{I} \omega_{I}\right) \wedge\left(\sum_{J} b_{J} *\left(\omega_{J}\right)\right) & =\sum_{I, J} a_{I} b_{J} \omega_{I} \wedge\left(* \omega_{J}\right) \\
& =\sum_{I} a_{I} b_{I} \omega_{n} \\
& =\langle\lambda, \eta\rangle \omega_{n}
\end{aligned}
$$

Finally, this isomorphism is unique, because if $\lambda \wedge(* \eta)=\langle\lambda, \eta\rangle \omega_{n}$ for all $\lambda, \eta \in \Lambda^{k}(V)$, we must have

$$
\sum_{I, J} a_{I} b_{J} \omega_{I} \wedge\left(* \omega_{J}\right)=\sum_{I} a_{I} b_{I} \omega_{n}
$$

so comparing terms gives $\omega_{I} \wedge\left(* \omega_{I}\right)=\omega_{n}$ for all I. The only way to do this is with the definition of $*$ given above, because mapping $*\left(\omega_{I}\right)$ to any other ω_{J} would result in a repetition in the wedge product, causing it to be 0 .
b) On the left is the original tensor, and on the right is what it gets mapped to by *.

$$
\begin{array}{c|c}
\omega_{1} & \omega_{23} \\
\omega_{2} & -\omega_{13} \\
\omega_{3} & \omega_{12} \\
\omega_{12} & \omega_{34} \\
\omega_{13} & -\omega_{24} \\
\omega_{14} & \omega_{23} \\
\omega_{23} & \omega_{14} \\
\omega_{24} & -\omega_{13} \\
\omega_{34} & \omega_{12}
\end{array}
$$

$(2,1,3)$ and $(1,3,2,4)$ both require one transposition to order, and $(2,4,1,3)$ requires three transpositions, so σ is odd and the sign is negated. The rest require an even number of transpositions, so the sign is unaffected.
c) Since $*$ is linear, it suffices to show $* \circ *\left(\omega_{I}\right)=(-1)^{k(n-k)}$ for the elementary alternating tensors ω_{I}. We will denote $* \circ *$ by $*^{2}$. We see that

$$
\begin{aligned}
^{2}\left(\omega_{I}\right) & =\left((-1)^{\sigma_{1}} \omega_{I^{c}}\right) \\
& =(-1)^{\sigma_{1}}(-1)^{\sigma_{2}} \omega_{I} \\
& =(-1)^{N} \omega_{I}
\end{aligned}
$$

since $\left(I^{c}\right)^{c}=I$, so $*^{2}$ is a scalar multiple of the identity map. Thus,

$$
\begin{aligned}
\left(*^{2} \omega_{I}\right) \wedge\left(* \omega_{I}\right) & =(-1)^{N} \omega_{n} \\
& =(-1)^{k(n-k)}\left(* \omega_{I}\right) \wedge\left(*^{2} \omega_{I}\right) \\
& =(-1)^{k(n-k)} \omega_{n}
\end{aligned}
$$

where the second line follows from the supercommutative property of the wedge product, and the last line follows from the definition of $*$ applied to $*\left(\omega_{I}\right)$. Comparing lines 1 and 3 , we see that $N=k(n-k)$, so $*^{2}\left(\omega_{I}\right)=$ $(-1)^{k(n-k)} \omega_{I}$.

