
Q1

Note that if u ∈ R4 and ω ∈ Λ2(R4), then ω(u, u) = 0.

a) Let x = (1, 0, 0, 0). We have f(x, x) = x1x2 − x2x1 + x21 = 1 6= 0, so f is
not alternating.

b) Let x = (1, 0, 1, 0). We have g(x, x) = x1x3 − x3x2 = 1 6= 0, so g is not
alternating.

c) If h is a tensor, it should satisfy h(2x, y) = h(x, y) + h(x, y) = 2h(x, y).
Consider x = (1, 0, 0, 0) and y = (0, 1, 0, 0). Then h(x, y) = 1, and
h(x, y) + h(x, y) = 2, but h(2x, y) = 8, which is not equal to 2h(x, y).
Thus, h cannot be an alternating tensor since it is not a tensor.
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Q2

The determinant of a matrix in Rn×n can be regarded as an alternating tensor
on (Rn)n, i.e. det ∈ Λn(Rn). We know that dim(Λn(Rn)) =

(
n
n

)
= 1, since the

only increasing permutation in nn is the identity, which we will denote by id.
Thus, we may write the determinant in the basis of length 1 of Λn(Rn), i.e.

det(v1, . . . , vn) = a
∑
σ∈Sk

(−1)σ(ϕid ◦ σ)(v1, . . . , vn),

where a ∈ R is to be determined. Let (v1, . . . , vn) be the standard basis of
Rn. To find a, it suffices to know the value of det for one particular list of
vectors xI = (vi1 , . . . , vin). Again, the only possible choice of I is the identity
permutation (1, 2, . . . , n), and this corresponds to the identity matrix, which
has determinant 1. Hence,

1 = a
∑
σ∈Sk

(−1)σ(ϕid ◦ σ)(v1, . . . , vn)

= a(−1)idϕid(v1, . . . , vn),

since by definition ϕI(vJ) = δIJ . Note that ϕid(v1, . . . , vn) is the product of
all the ith components of vi, which is 1 since (v1, . . . , vn) is the standard basis.
Moreover, the sign of id is 1, so we get a = 1. It follows that

det =
∑
σ∈Sk

(−1)σ(ϕid ◦ σ) = ωid.
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Q3

Let (v1, . . . , vm) be the standard basis of Rm and xL = (vl1 , . . . , vlk) for L ∈ nka.
We have that L∗ωI = ω ◦A, so

(ωI ◦A)xL =
∑
J∈mk

a

cJωJ(xL).

By properties of elementary alternating k−tensors, ωJ(xL) = δJL, so the right
hand side is cL. Now let αi ∈ Rn be the ith column of A, and note that Avi = αi
since vi is part of the standard basis of Rm. The left hand side is therefore

ωI(Avl1 , . . . , Avlk) = ωI(αl1 , . . . , αlk)

=
∑
σ∈Sk

(−1)σ(ϕI ◦ σ)(αl1 , . . . , αlk)

=
∑
σ∈Sk

(−1)σϕI(ασ(l1), . . . , ασ(lk))

=
∑
σ∈Sk

(−1)σAi1,σ(l1) · · ·Aik,σ(lk),

since ϕI picks the ith1 element of ασ(l1), namely, the entry (i1, σ(l1)) in A, and
so on. Thus,

cJ =
∑
σ∈Sk

(−1)σAi1,σ(j1) · · ·Aik,σ(jk),

where I = (i1, . . . , ik) and J = (j1, . . . , jk).
Remark: we can also say that cJ is the k × k minor of A corresponding to the
rows (i1, . . . , ik) and the columns (j1, . . . , jk).
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Q4

Let nks = {(i1, i2, . . . , ik) ∈ nk : i1 ≤ i2 ≤ · · · ≤ ik}, i.e. the subset of nk

consisting of only non-decreasing sequences. We claim that the collection of σI
where σI =

∑
τ∈Sk

ϕI ◦τ and I ∈ nks is a basis for Sk(V ), with dimension
(
n+k−1

k

)
.

First, we show that σI is symmetric, which is equivalent to showing σI ◦ η = σI
for η ∈ Sk. We have

σI ◦ η =
∑
τ∈Sk

(ϕI ◦ τ) ◦ η

=
∑
τ∈Sk

ϕI ◦ (τ ◦ η)

=
∑
τ ′∈Sk

ϕI ◦ τ ′ = σI ,

where the last line is justified because right multiplication by an element in Sk
is a bijection from Sk to Sk. Next, we show that we can express any T ∈ Sk(V )

as a sum of σI , i.e. T =
∑
I∈nk

s

bIσI , where bI ∈ R. Let (v1, . . . , vn) be a basis for

V . Note that we can write any I ∈ nks uniquely as a n-tuple aI = (a1, . . . , an),
where ai is the number of times that i appears in I, because I is nondecreasing.
Conversely, an n-tuple (a1, . . . , an) with a1 + · · · + an = k uniquely specifies
some nondecreasing sequence I. Then, evaluating T on vJ gives

T (vJ) =
∑
I∈nk

s

bIσI(vJ)

= bJa1! · · · an!,

because (σI ◦ τ)vJ = 0 unless there exist permutations τ ∈ Sk that leave the
sequence J unchanged. This occurs if and only if τ permutes the repeated
entries, which can happen in a1! · · · an! ways (the 1s can be permuted a1! ways,
etc.). Hence,

T =
∑
I∈nk

s

bIσI ,

where bI = 1
a1!···an! and (a1, . . . , an) is the n-tuple corresponding to I. Finally,

the dimension of Sk(V ) is given by the number of nondecreasing sequences in
nk. But this was shown in class to be

(
n+k−1

k

)
.
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