Q1

Note that if $u \in \mathbb{R}^{4}$ and $\omega \in \Lambda^{2}\left(\mathbb{R}^{4}\right)$, then $\omega(u, u)=0$.
a) Let $x=(1,0,0,0)$. We have $f(x, x)=x_{1} x_{2}-x_{2} x_{1}+x_{1}^{2}=1 \neq 0$, so f is not alternating.
b) Let $x=(1,0,1,0)$. We have $g(x, x)=x_{1} x_{3}-x_{3} x_{2}=1 \neq 0$, so g is not alternating.
c) If h is a tensor, it should satisfy $h(2 x, y)=h(x, y)+h(x, y)=2 h(x, y)$. Consider $x=(1,0,0,0)$ and $y=(0,1,0,0)$. Then $h(x, y)=1$, and $h(x, y)+h(x, y)=2$, but $h(2 x, y)=8$, which is not equal to $2 h(x, y)$. Thus, h cannot be an alternating tensor since it is not a tensor.

Q2

The determinant of a matrix in $\mathbb{R}^{n \times n}$ can be regarded as an alternating tensor on $\left(\mathbb{R}^{n}\right)^{n}$, i.e. $\operatorname{det} \in \Lambda^{n}\left(\mathbb{R}^{n}\right)$. We know that $\operatorname{dim}\left(\Lambda^{n}\left(\mathbb{R}^{n}\right)\right)=\binom{n}{n}=1$, since the only increasing permutation in \underline{n}^{n} is the identity, which we will denote by id. Thus, we may write the determinant in the basis of length 1 of $\Lambda^{n}\left(\mathbb{R}^{n}\right)$, i.e.

$$
\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=a \sum_{\sigma \in S_{k}}(-1)^{\sigma}\left(\varphi_{\mathrm{id}} \circ \sigma\right)\left(v_{1}, \ldots, v_{n}\right)
$$

where $a \in \mathbb{R}$ is to be determined. Let $\left(v_{1}, \ldots, v_{n}\right)$ be the standard basis of R^{n}. To find a, it suffices to know the value of det for one particular list of vectors $x_{I}=\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)$. Again, the only possible choice of I is the identity permutation $(1,2, \ldots, n)$, and this corresponds to the identity matrix, which has determinant 1. Hence,

$$
\begin{aligned}
1 & =a \sum_{\sigma \in S_{k}}(-1)^{\sigma}\left(\varphi_{\mathrm{id}} \circ \sigma\right)\left(v_{1}, \ldots, v_{n}\right) \\
& =a(-1)^{\mathrm{id}} \varphi_{\mathrm{id}}\left(v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

since by definition $\varphi_{I}\left(v_{J}\right)=\delta_{I J}$. Note that $\varphi_{\mathrm{id}}\left(v_{1}, \ldots, v_{n}\right)$ is the product of all the $i^{\text {th }}$ components of v_{i}, which is 1 since $\left(v_{1}, \ldots, v_{n}\right)$ is the standard basis. Moreover, the sign of id is 1 , so we get $a=1$. It follows that

$$
\operatorname{det}=\sum_{\sigma \in S_{k}}(-1)^{\sigma}\left(\varphi_{\mathrm{id}} \circ \sigma\right)=\omega_{\mathrm{id}}
$$

Q3

Let $\left(v_{1}, \ldots, v_{m}\right)$ be the standard basis of \mathbb{R}^{m} and $x_{L}=\left(v_{l_{1}}, \ldots, v_{l_{k}}\right)$ for $L \in \underline{n}_{a}^{k}$. We have that $L^{*} \omega_{I}=\omega \circ A$, so

$$
\left(\omega_{I} \circ A\right) x_{L}=\sum_{J \in \underline{m}_{a}^{k}} c_{J} \omega_{J}\left(x_{L}\right) .
$$

By properties of elementary alternating k-tensors, $\omega_{J}\left(x_{L}\right)=\delta_{J L}$, so the right hand side is c_{L}. Now let $\alpha_{i} \in \mathbb{R}^{n}$ be the $i^{\text {th }}$ column of A, and note that $A v_{i}=\alpha_{i}$ since v_{i} is part of the standard basis of \mathbb{R}^{m}. The left hand side is therefore

$$
\begin{aligned}
\omega_{I}\left(A v_{l_{1}}, \ldots, A v_{l_{k}}\right) & =\omega_{I}\left(\alpha_{l_{1}}, \ldots, \alpha_{l_{k}}\right) \\
& =\sum_{\sigma \in S_{k}}(-1)^{\sigma}\left(\varphi_{I} \circ \sigma\right)\left(\alpha_{l_{1}}, \ldots, \alpha_{l_{k}}\right) \\
& =\sum_{\sigma \in S_{k}}(-1)^{\sigma} \varphi_{I}\left(\alpha_{\sigma\left(l_{1}\right)}, \ldots, \alpha_{\sigma\left(l_{k}\right)}\right) \\
& =\sum_{\sigma \in S_{k}}(-1)^{\sigma} A_{i_{1}, \sigma\left(l_{1}\right)} \cdots A_{i_{k}, \sigma\left(l_{k}\right)}
\end{aligned}
$$

since φ_{I} picks the $i_{1}^{\text {th }}$ element of $\alpha_{\sigma\left(l_{1}\right)}$, namely, the entry $\left(i_{1}, \sigma\left(l_{1}\right)\right)$ in A, and so on. Thus,

$$
c_{J}=\sum_{\sigma \in S_{k}}(-1)^{\sigma} A_{i_{1}, \sigma\left(j_{1}\right)} \cdots A_{i_{k}, \sigma\left(j_{k}\right)}
$$

where $I=\left(i_{1}, \ldots, i_{k}\right)$ and $J=\left(j_{1}, \ldots, j_{k}\right)$.
Remark: we can also say that c_{J} is the $k \times k$ minor of A corresponding to the rows $\left(i_{1}, \ldots, i_{k}\right)$ and the columns $\left(j_{1}, \ldots, j_{k}\right)$.

Q4

Let $\underline{n}_{s}^{k}=\left\{\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in \underline{n}^{k}: i_{1} \leq i_{2} \leq \cdots \leq i_{k}\right\}$, i.e. the subset of \underline{n}^{k} consisting of only non-decreasing sequences. We claim that the collection of σ_{I} where $\sigma_{I}=\sum_{\tau \in S_{k}} \varphi_{I} \circ \tau$ and $I \in \underline{n}_{s}^{k}$ is a basis for $S^{k}(V)$, with dimension $\binom{n+k-1}{k}$. First, we show that σ_{I} is symmetric, which is equivalent to showing $\sigma_{I} \circ \eta=\sigma_{I}$ for $\eta \in S_{k}$. We have

$$
\begin{aligned}
\sigma_{I} \circ \eta & =\sum_{\tau \in S_{k}}\left(\varphi_{I} \circ \tau\right) \circ \eta \\
& =\sum_{\tau \in S_{k}} \varphi_{I} \circ(\tau \circ \eta) \\
& =\sum_{\tau^{\prime} \in S_{k}} \varphi_{I} \circ \tau^{\prime}=\sigma_{I},
\end{aligned}
$$

where the last line is justified because right multiplication by an element in S_{k} is a bijection from S_{k} to S_{k}. Next, we show that we can express any $T \in S^{k}(V)$ as a sum of σ_{I}, i.e. $T=\sum_{I \in n_{s}^{k}} b_{I} \sigma_{I}$, where $b_{I} \in \mathbb{R}$. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis for V. Note that we can write any $I \in \underline{n}_{s}^{k}$ uniquely as a n-tuple $a_{I}=\left(a_{1}, \ldots, a_{n}\right)$, where a_{i} is the number of times that i appears in I, because I is nondecreasing. Conversely, an n-tuple (a_{1}, \ldots, a_{n}) with $a_{1}+\cdots+a_{n}=k$ uniquely specifies some nondecreasing sequence I. Then, evaluating T on v_{J} gives

$$
\begin{aligned}
T\left(v_{J}\right) & =\sum_{I \in \underline{n}_{s}^{k}} b_{I} \sigma_{I}\left(v_{J}\right) \\
& =b_{J} a_{1}!\cdots a_{n}!,
\end{aligned}
$$

because $\left(\sigma_{I} \circ \tau\right) v_{J}=0$ unless there exist permutations $\tau \in S_{k}$ that leave the sequence J unchanged. This occurs if and only if τ permutes the repeated entries, which can happen in $a_{1}!\cdots a_{n}$! ways (the 1 s can be permuted a_{1} ! ways, etc.). Hence,

$$
T=\sum_{I \in \underline{n}_{s}^{k}} b_{I} \sigma_{I},
$$

where $b_{I}=\frac{1}{a_{1}!\cdots a_{n}!}$ and $\left(a_{1}, \ldots, a_{n}\right)$ is the n-tuple corresponding to I. Finally, the dimension of $S^{k}(V)$ is given by the number of nondecreasing sequences in \underline{n}^{k}. But this was shown in class to be $\binom{n+k-1}{k}$.

