Q1

Define $A=(0, a) \times\left(0, \frac{\pi}{2}\right) \times(0,2 \pi)$. It's pretty clear that $G(A)=V-\{(x, y, z) \in V: x=y=0\}$, since the square of the norm of anything in $g(A)$ is just r^{2}, and since $r<a, r^{2}<a^{2}$, and $z=r \sin \phi>0$, however x and y are 0 only when $\cos \phi=0$, which never happens. Meaning that anything on the z axis is not in $g(A)$.

Conversely, if (x, y, z) is in $V-\{(x, y, z) \in V: x=y=0\}$, then taking $r=\sqrt{x^{2}+y^{2}+z^{2}}, \phi=\arctan \left(\frac{z}{\sqrt{x^{2}+y^{2}}}\right)$, $\theta=\arcsin \left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)$, which is indeed an ordered triple in A gives us (x, y, z) back. So, it is indeed true that everything in $V-\{(x, y, z) \in V: x=y=0\}$ is in $g(A)$. Finally, since all points in $g(A)$ are in the form given above, it is indeed true that $g(A)=V-\{(x, y, z) \in V: x=y=0\}$.

Now, the section of the z axis in V (the set missing, $\{(x, y, z) \in V: x=y=0\}$) is bounded and of measure 0 in \mathbb{R}^{3}, so it of content 0 . Thus, for any integrable $f, \int_{g(A)} f=\int_{V} f$.

Finally, note that g is clearly injective on A. Each component function is not, but if you change r, θ, or ϕ, at least one of the component functions will be different (since A only contains θ, ϕ on less than 1 period), and thus g i injective. Thus, $g: A \rightarrow g(A)$ is 1-1.

Now, we want to use the change of variables theorem on:

$$
\int_{V} f=\int_{g(A)} f
$$

and then change of variables tells us:

$$
\int_{g(A)} f=\int_{A} f \circ g\left|\operatorname{det} g^{\prime}\right|
$$

Using change of variables, we get:

$$
\int_{V} z=\int_{A} z \circ g\left|\operatorname{det} g^{\prime}\right|=\int_{A} r \sin \phi\left|\operatorname{det} g^{\prime}\right|
$$

So, we just need to know the Jacobian determinant of g.

$$
g^{\prime}=\left(\begin{array}{lll}
D_{1} g_{1} & D_{2} g_{1} & D_{3} g_{1} \\
D_{1} g_{2} & D_{2} g_{2} & D_{3} g_{2} \\
D_{1} g_{3} & D_{2} g_{3} & D_{3} g_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi \cos \theta & -r \sin \phi \cos \theta & -r \cos \phi \sin \theta \\
\cos \phi \sin \theta & -r \sin \phi \sin \theta & r \cos \phi \cos \theta \\
\sin \phi & r \cos \phi & 0
\end{array}\right)
$$

Which has determinant (using the bottom row so that I can take advantage of that 0)

$$
-\sin \phi\left[r^{2} \sin \phi \cos \phi \cos ^{2} \theta+r^{2} \sin \phi \cos \phi \sin ^{2} \theta\right]-r \cos \phi\left[r \cos ^{2} \phi \cos ^{2} \theta+r \cos ^{2} \phi \sin ^{2} \theta\right]+0=-r^{2} \cos \phi
$$

(Turns out a lot cancels out). So, then we have:

$$
\int_{A} r \sin \phi\left|\operatorname{det} g^{\prime}\right|=\int_{A} r^{2} \sin \phi \cos \phi
$$

This function is obviously continuous, so Fubini tells us:

$$
\int_{A} r^{2} \sin \phi \cos \phi=\int_{0}^{a} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi} r^{2} \sin \phi \cos \phi d \theta d \phi d r
$$

and we're done.

Q2

Suppose for the sake of contradiction that $\int_{U_{1}} f$ exists. Now we're gonna do some change of variables stuff.
Define $g(r, \theta)=(r \cos \theta, r \sin \theta)$. Then, consider the set $A=(0,1) \times(0,2 \pi)$. It's pretty obvious that $g(A) \subseteq U_{1}$, since $r \cos \theta)^{2}+(r \sin \theta)^{2}=r^{2}$, which is between 0 and 1 . However, since θ is never equal to 0 or 2π, we never have $y=0$. Thus, the set $\left\{(x, y) \in U_{1}: y=0\right\}$ is not in $g(A)$. However, this set is just a finite line segment in \mathbb{R}^{2}, so is of content 0 . Thus, since f is integrable on U_{1}, it is also integrable on $g(A)$, and:

$$
\int_{U_{i}} f=\int_{g(A)} f
$$

Now, note that $g(r, \theta)$ is clearly injective on A, since $\theta \in(0,2 \pi)$ so our \sin and \cos only oscillate over one period, and r is always positive. So, g is $1-1$ on A. Now, we can use the change of variables theorem to get:

$$
\int_{g(A)} f=\int_{A} f \circ g\left|\operatorname{det} g^{\prime}\right|
$$

And,

$$
f \circ g=\frac{1}{\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)}=\frac{1}{r}
$$

And as we showed in class, $\operatorname{det} g^{\prime}=r$. So, we have the integral:

$$
\int_{A} \frac{r}{r^{2}}=\int_{A} \frac{1}{r}
$$

And then, since this function is continuous on A, we can apply fubini to get:

$$
\int_{0}^{1} \int_{0}^{2 \pi} \frac{1}{r} d \theta d r=2 \pi \int_{0}^{1} \frac{1}{r} d r
$$

But this last integral doesn't exist, contradicting our assumption that f is integrable on U_{1}.
Now, what about U_{2} ? We can do the same thing. Let $A=(1, \infty) \times(0,2 \pi)$. Then, $g(A)=\left\{(x, y): x^{2}+y^{2}>\right.$ $1, y \neq 0\}$. Again, g is injective on A. This differs from U_{2} on an unbounded set. Specifically, it's missing the points on the x axis, specifically the set: $C=\left\{(x, 0): x^{2}>1\right\}$. These sets are disjoint, and $U_{2}=g(A) \cup C$. So,

$$
\int_{U_{2}} f=\int_{g(A)} f+\int_{C} f
$$

Note that f is integrable on both $g(a)$ and C, since both of these sets have a measure 0 boundary, and the set of discontinities of f is of measure 0 , by the assumption that f is integrable on U_{2}. Then, we consider

$$
\int_{g(A)} f
$$

Change of variables once again gives us:

$$
\int_{A} f \circ g\left|\operatorname{det} g^{\prime}\right|=\int_{A} \frac{1}{r}=2 \pi \int_{1}^{\infty} \frac{1}{r} d r
$$

which again doesn't exist, contradicting our assumption that f is integrable on U_{2}. So, f is integrable on neither of these sets.

Q3

We have

$$
B=\{(x, y): x>0, y>0,1<x y<2, x<y<4 x\}
$$

If we let $x=u / v$ and $y=u v$, let's check what the conditions become:

$$
\begin{gathered}
x>0 \Rightarrow u / v>0 \Rightarrow u>0 \\
y>0 \Rightarrow u v>0 \Rightarrow v>0 \\
1<x y<2 \Rightarrow 1<u^{2}<2 \Rightarrow 1<u<\sqrt{2} \\
x<y<4 x \Rightarrow 1<y / x<4 \Rightarrow 1<v<4
\end{gathered}
$$

So $B=\{(u / v, u v): u \in(1, \sqrt{2}), v \in(1,2)\}$. Now, define $A=\{(u, v): u \in(1, \sqrt{2}), v \in(1,2)\}$. Define $g: A \rightarrow \mathbb{R}^{2}$ by $g(u, v)=\left(\frac{u}{v}, u v\right)$. We have that $g(A)=B$, essentially by definition. g is also clearly an injection, so it is a bijection from $A \rightarrow B$, so we can use change of variables. For that we need $\operatorname{det} g^{\prime}$, which is given by:

$$
g^{\prime}=\left(\begin{array}{cc}
D_{1} g_{1} & D_{2} g_{1} \\
D_{1} g_{2} & D_{2} g_{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{v} & -\frac{u}{v^{2}} \\
v & u
\end{array}\right)
$$

Which has determinant $\frac{u}{v}+\frac{u}{v}=\frac{2 u}{v}$. So, we apply change of variables:

$$
\begin{aligned}
& \int_{B} x^{2} y^{3}=\int_{g(A)} x^{2} y^{3} \circ g\left|\operatorname{det} g^{\prime}\right|=\int_{A} u^{5} v\left|\operatorname{det} g^{\prime}\right|=\int_{A} 2 u^{6} \\
& \begin{aligned}
\int_{A} 2 u^{6} & =\int_{1}^{\sqrt{2}} \int_{1}^{2} 2 u^{6} d v d u \\
& =2 \int_{1}^{\sqrt{2}} u^{6} d u \\
& =2\left[\frac{u^{7}}{7}\right]_{1}^{\sqrt{2}} \\
& =\frac{2}{7}(8 \sqrt{2}-1)
\end{aligned}
\end{aligned}
$$

Q4

If we define c to be the open unit tetrahedron, that is, the open tetrahedron with verticies $(0,0,0),(1,0,0),(0,1,0),(0,0,1)$, then if we define a linear map

$$
L=\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & 1 \\
3 & 2 & 1
\end{array}\right)
$$

Then L sends the verticies of C to the verticies of T, so $L c=\operatorname{int} T$. Since the boundary of T is a closed set of measure 0 in \mathbb{R}^{3}, and $\operatorname{det} L=-2, L$ is $1-1$, we can apply the change of variables theorem.

$$
\int_{T} f=\int_{L} c f=\int_{c} f \circ l|\operatorname{det} L|=2 \int_{c} f \circ L
$$

So,

$$
f \circ L=f(L(x, y, z))=f\left(\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & 1 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right)=f(x-z, 2 x+y+z, 3 x+2 y+z)
$$

Which is just the function $2 x$. So, we want to find:

$$
2 \int_{c} 2 x
$$

Letting χ_{c} be the indicator function of c, this is:

$$
2 \int_{(0,1)^{3}} \chi_{c} \cdot 2 x
$$

Fubini gives:

$$
2 \int_{(0,1)^{3}} \chi_{c} \cdot 2 x=2 \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \chi_{c} \cdot 2 x d x d y d z
$$

Now, $\chi_{c}=0$ unless $x \in C . x, y, z \in c$ if $x, y, z>0$ and $x+y+z>1$. So, our integral becomes:

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \chi_{c} \cdot 2 x d x d y d z=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1-(y+z)} \chi_{c} \cdot 2 x d x d y d z
$$

Since χ_{c} is 0 if $x \geq 1-(y+z)$. Then, we also know $\chi_{c}=0$ if $y \geq 1-z$, so our final integral is:

$$
2 \int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-(y+z)} 2 x d x d y d z
$$

since χ_{c} is now always 1 . So, we can integrate:

$$
\begin{aligned}
4 \int_{0}^{1} \int_{0}^{1-z} \int_{0}^{1-(y+z)} x d x d y d z & =2 \int_{0}^{1} \int_{0}^{1-z} y^{2}+2 y z-2 y+z^{2}-2 z+1 d y d z \\
& =-\frac{2}{3} \int_{0}^{1} z^{3}-3 z^{2}+3 z-1 d z \\
& =\frac{1}{3}\left(-\frac{1}{4}\right) \\
& =\frac{1}{6}
\end{aligned}
$$

and we're done.

Q5

We want to calculate the integral

$$
\int_{T} 1
$$

We can use the hint to find a set A with $g(A)=T$. While A is closed, we can just get rid of it's boundary, which has a bounded image of measure 0 (the "surface" of the torus) to have an open set that works for the change of variables theorem. I'll still call this set A. Now, note that g is pretty obviously 1-1. Finally, we need $\operatorname{det} g^{\prime}$.

$$
g^{\prime}=\left(\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This has determinant r. So, change of variables tells us:

$$
\int_{T} 1=\int_{g}(A) 1=\int_{A}(1 \circ g) \cdot r=\int_{A} r
$$

Now, we want to use fubini, but to do that we need to determine the bounds of the integrals. First of all, our choice of θ has no effect on what r and z need to be, a torus is rotationally symmetric. That means that z can range from the top of the disc of radius A to the bottom, which means from $-a$ to a. Now, if we are given z, what values can r take so that $(r, \theta, z) \in A$?

b
gives us our allowable value of r. So, we have our bounds, and now we can use fubini:

$$
\begin{align*}
\int_{A} r & =\int_{0}^{2 \pi} \int_{-a}^{a} \int_{b-\sqrt{a^{2}-z^{2}}}^{b+\sqrt{a^{2}-z^{2}}} r d r d z d \theta \tag{1}\\
& =\int_{0}^{2 \pi} \int_{-a}^{a} 2 b \sqrt{a^{2}-z^{2}} d z d \theta \tag{2}\\
& =\int_{0}^{2 \pi} \pi a^{2} b d \theta \tag{3}\\
& =2 \pi^{2} a^{2} b \tag{4}
\end{align*}
$$

And we're done.

