Q1

Let $U_{1}, \ldots U_{n}$ be open sets covering the boundary of A (finitely many since the boundary of A has measure 0 and thus content 0), with $B=\bigcup_{i=1}^{n} U_{i}$, and $V\left(U_{1}\right)+\ldots+V\left(U_{n}\right)<\varepsilon$. B is a finite union of open sets, and is thus itself open. Now, take $C=A \backslash B$. We know C is closed since C^{c} is $\operatorname{ext} A \cup B$, which is a union of open sets and thus open. So, C is closed and contained in A, so it is bounded, meaning that C is compact.

Since C is closed, it contains its boundary. Now, if x is on the boundary of C, then any open ball containing x must contain something in C and something not in C, so it must contain an element of B. Thus, x is also on the boundary of B. So, $B d(C) \subseteq B d(B)$. B is a union of open rectangles, so it is integrable. Thus, $B d(B)$ is of measure 0. So, since $B d(C) \subseteq B d(B), B d(C)$ is also of measure 0 . So, C is Jordan Measurable.

Now $V(A \backslash C)=V(A \backslash(A \backslash B))=V(B)<\varepsilon$.

Q2

Suppose $f: S \subseteq \mathbb{R}^{n} \rightarrow R$.
If there doesn't exist one point a for which $D_{1,2} f(a)-D_{2,1} f(a) \neq 0$, we're done. If there's a point a where $D_{1,2} f(a)-D_{2,1} f(a) \neq 0$, then since $D_{1,2} f(a)$ and $D_{2,1} f(a)$ are continuous, we know that there's an open rectangle A around a with $D_{1,2} f(a)-D_{2,1} f(a) \neq 0$ (and in fact, the difference maintains the same sign) for all $a \in A$, and let $a=\left(a_{1}, \ldots a_{n}\right)$.
Let $A=\left(x_{1}, x_{2}\right) \times\left(y_{1}, y_{2}\right) \times\left(b_{3}, b_{4}\right) \times \ldots \times\left(b_{2 n-1}, b_{2 n}\right)$, and define

$$
c \subset A=\left\{(x, y):\left(x, y, a_{3}, \ldots a_{n}\right), x \in\left(x_{1}, x_{2}\right), y \in\left(y_{1}, y_{2}\right)\right\}
$$

Then, $c==\left(x_{1}, x_{2}\right) \times\left(y_{1}, y_{2}\right)$
Now, consider the function $g(x, y)=f\left(x, y, a_{3}, \ldots a_{n}\right)$. We have $G: C \rightarrow R$. Also, $D_{1,2} g(x, y)=D_{1,2} f\left(x, y, a_{3}, \ldots a_{n}\right)$, and similar for $D_{2,1} g(x, y)$. If $D_{1,2} f(a)-D_{2,1} f(a) \neq 0$ (and difference maintains the same sign) on A, then $D_{1,2} g(x, y)-D_{2,1} g(x, y) \neq 0$ (and the difference maintains the same sign) on c. Thus,

$$
\int_{c} D_{1,2} g(x, y)-D_{2,1} g(x, y) \neq 0
$$

Now, both $D_{1,2} g$ and $D_{2,1} g$ are continuous, so we can apply naive fubini.

$$
\begin{aligned}
\int_{c} D_{1,2} g(x, y)-D_{2,1} g(x, y) & =\int_{c} D_{1,2} g(x, y)-\int_{c} D_{2,1} g(x, y) \\
& =\int_{\left(y_{1}, y_{2}\right)} \int_{\left(x_{1}, x_{2}\right)} \frac{\partial}{\partial x} \frac{\partial}{\partial y} g(x, y) d x d y-\int_{\left(x_{1}, x_{2}\right)} \int_{\left(y_{1}, y_{2}\right)} \frac{\partial}{\partial y} \frac{\partial}{\partial x} g(x, y) d y d x
\end{aligned}
$$

(from naive Fubini)

$$
\begin{aligned}
& =\int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} \frac{\partial}{\partial x} \frac{\partial}{\partial y} g(x, y) d x d y-\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \frac{\partial}{\partial y} \frac{\partial}{\partial x} g(x, y) d y d x \\
& =\int_{y_{1}}^{y_{1}} \frac{\partial}{\partial y}\left(g\left(x_{2}, y\right)-g\left(x_{1}, y\right) d y-\int_{x_{1}}^{x_{2}} \frac{\partial}{\partial x}\left(g\left(x, y_{2}\right)-g\left(x, y_{1}\right)\right) d x\right. \\
& =g\left(x_{2}, y_{2}\right)-g\left(x_{1}, y_{2}\right)-g\left(x_{2}, y_{1}\right)+g\left(x_{1}, y_{1}\right)-\left[g\left(x_{2}, y_{2}\right)-g\left(x_{2}, y_{1}\right)-g\left(x_{1}, y_{2}\right)+g\left(x_{1}, y_{1}\right)\right] \\
& =g\left(x_{2}, y_{2}\right)-g\left(x_{1}, y_{2}\right)-g\left(x_{2}, y_{1}\right)+g\left(x_{1}, y_{1}\right)-g\left(x_{2}, y_{2}\right)+g\left(x_{2}, y_{1}\right)+g\left(x_{1}, y_{2}\right)-g\left(x_{1}, y_{1}\right) \\
& =0
\end{aligned}
$$

So, the integral is 0 , meaning that no a exists such that $D_{1,2} f(a)-D_{2,1} f(a) \neq 0$. So, they're equal and we're done.

Q3
Define $C \subseteq[a, b] \times[c, d]$ by $C=[a, b] \times[c, y]$ for some constant y. Then,
$F(y)=\int_{a}^{b} f(x, y) d x=\int_{a}^{b} f(x, y)-f(x, c)+f(x, c) d x=\int_{a}^{b} \int_{c}^{y} D_{2} f(x, y) d y+f(x, c) d x=\int_{C} D_{2} f(x, y)+\int_{a}^{b} f(x, c) d x$
Then, we have:

$$
\begin{aligned}
F^{\prime}(y) & =\frac{d}{d y}\left(\int_{C} D_{2} f(x, y)+\int_{a}^{b} f(x, c) d x\right) \\
& =\frac{d}{d y} \int_{C} f(x, y) \\
& =\frac{d}{d y} \int_{c}^{y} \int_{a}^{b} D_{2} f(x, y) d x d y \\
& =\int_{a}^{b} D_{2} f(x, y) d x
\end{aligned}
$$

As desired, so we're done. Note that if we had $F(x)=\int_{c}^{d} f(x, y) d y$ we could have applied the same argument to show that $F^{\prime}(x)=\int_{c}^{d} D_{1} f(x, y) d y$.

Q4
First, consider

$$
D_{1} f(x, y)=D_{1} \int_{0}^{x} g_{1}(t, 0) d t+D_{1} \int_{0}^{y} g_{2}(x, t) d t
$$

So, let's find $D_{1} \int_{0}^{x} g_{1}(t, 0) d t$ first. This is just equal to $g_{1}(x, 0)$. Now, for $D_{1} \int_{0}^{y} g_{2}(x, t) d t$, we can set $h(x)=$ $\int_{0}^{y} g_{2}(x, t) d t$. Then, applying question 3 , we get

$$
h^{\prime}(x)=\int_{0}^{y} D_{1} g_{2}(x, t) d t=\int_{0}^{y} D_{2} g_{1}(x, t) d t=g_{1}(x, 0)-g_{1}(x, y)
$$

So,

$$
D_{1} f(x, y)=D_{1} \int_{0}^{x} g_{1}(t, 0) d t+D_{1} \int_{0}^{y} g_{2}(x, t) d t=g_{1}(x, 0)+g_{1}(x, y)-g_{1}(x, 0)=g_{1}(x, y)
$$

So that's done. Now, let's consider

$$
D_{2} f(x, y)=D_{2} \int_{0}^{x} g_{1}(t, 0) d t+D_{2} \int_{0}^{y} g_{2}(x, t) d t
$$

First, note that $g_{1}(t, 0)=D_{1} f(t, 0)$, so we have:

$$
D_{2} \int_{0}^{x} D_{1} f(t, 0) d t=D_{2}(f(x, 0)-f(0,0))=0
$$

Now, $D_{2} \int_{0}^{y} g_{2}(x, t) d t$ is just $g_{2}(x, y)$. So, putting it all together, we get:

$$
D_{2} f(x, y)=D_{2} \int_{0}^{x} g_{1}(t, 0) d t+D_{2} \int_{0}^{y} g_{2}(x, t) d t=0+g_{2}(x, y)=g_{2}(x, y)
$$

So, we're done.

Q5

a) First, note that if A is bounded, so is $L(A)$, since for each $x \in A,|L(x)| \leq C|x|$ for a specific c determined by the linear map.
Since A is Jordan Measurable, we know that χ_{A} is discontinuous only on a set of measure 0 . Now, we know that each of the linear transformations provided are invertible, meaning they are bijections. Also, they're continuous (since linear transformations are continuous). Now, consider the function $\chi=\chi_{A} \circ L^{-1}$. If $x \in L(A), \chi(x)=\chi_{A} L^{-1}(x)$. Since $L^{-1} x \in A, \chi_{A} L^{-1}(x)=1$. Similarly, if $x \notin L(A), L^{-1}(x) \notin A$, so $\chi(x)=\chi_{A} L^{-1}(x)=0$. So, we have that $\chi=\chi_{L(A)}$.

So, what are the discontinuities of $\chi_{L}(A) \circ L^{-1}$? First of all, note that since the set of discontinuities of χ_{A} is closed and of measure 0 , so the set of discontinuities has content 0 , we can find a list of rectangles $U_{1}, \ldots U_{k}$ which cover the set of discontinuities of χ_{A}, and whose sum of volumes is less than ε for any given epsilon. Now, any rectangle is the union of a finite number of n-cubes, so we can assume wlog that the $U_{1}, \ldots U_{k}$ are n-cubes, each with side length l_{i}. So, the sum of the volumes of these cubes is $l_{1}^{n}+\ldots+l_{k}^{n}$.

Now:
Lemma 1. If B is a ball $\{x:|x-a| \leq d\}$, and L is a bijection, then $L(B) \subseteq\{x:|x-L a| \leq C d\}$.
Proof. We know that any linear operator L satisfies $|L x| \leq C|x|$ for some C. Now, suppose $x \in B$. Then, $|L x-L a|=|L(x-a)| \leq C|x-a| \leq C d$, so $|L x-L a| \leq C d$, So $L(B) \subseteq\{x:|x-L a| \leq C d\}$.

Let ε be given. We want to find a set of rectangles covering the discontinuities of $\chi_{A} \circ L^{-1}$ whose sum of volumes is less than ε.

There exist $U_{1}, \ldots U_{k}$ covering the discontinuities of χ_{A} such that $l_{i}^{n}+\ldots+l_{k}^{n}<\frac{\varepsilon}{2^{n} C^{n}}$.
Now, consider balls containing $U_{1}, \ldots U_{k}$. Let $U_{i} \subset B_{i}$, with B_{i} being a ball of radius $2 l_{i}$. Now, $L\left(U_{i}\right) \subset L\left(B_{i}\right) \subset$ B_{i}^{\prime}, where B_{i}^{\prime} is a ball of radius $2 C l_{i}$ (from the lemma). Note that since the U_{i} a cover the set of discontinuities of χ_{A}, and L^{-1} is a continuous bijection, then each discontinuity of $\chi_{A} \circ L^{-1}$ is in one of the $L U_{i}$ s, and therefore B_{i}^{\prime}.

Each B_{i}^{\prime} is contained in a cube of side length $2 C l_{i}$, so the cubes $C_{i}, \ldots C_{k}$ cover the set of discontinuities of $\chi_{A} \circ L^{-1}$. Then, the sum of the volumes of these cubes is $\left(2 C l_{1}\right)^{n}+\ldots\left(2 C l_{k}\right)^{n}=2^{n} C^{n}\left(l_{1}^{n}+\ldots l_{k}^{n}\right)$. However, we have picked our $U_{1}, \ldots U_{k}$ so that $l_{i}^{n}+\ldots+l_{k}^{n}<\frac{\varepsilon}{2^{n} C^{n}}$, so we get:

$$
\sum_{i=1}^{k} V\left(C_{i}\right)=2^{n} C^{n}\left(l_{1}^{n}+\ldots l_{k}^{n}\right)<2^{n} C^{n} \frac{\varepsilon}{2^{n} C^{n}}=\varepsilon
$$

So, $C_{1}, \ldots C_{k}$ cover the set of discontinuities of $\chi_{A} \circ L^{-1}$, and their volumes sum to less that ε, so the set of discontinuities of $\chi_{A} \circ L^{-1}$ is of measure 0 .

But, we established that $\chi_{A} \circ L^{-1}=\chi_{L(A)}$, meaning that the set of discontinuities of $\chi_{L(A)}$ is of measure 0 , so $L(A)$ is Jordan measurable.
b)

Case 1: Consider the first type of operator, of the form

$$
L\left(e_{k}\right)= \begin{cases}\alpha e_{i} & k=i \\ e_{k} & \text { else }\end{cases}
$$

Note that $\operatorname{det} L=\alpha$.
Lemma 2. If A is a rectangle of the form $\left[a_{1}, a_{2}\right] \times \ldots \times\left[a_{i}, b_{i}\right] \times \ldots\left[a_{n}, b_{n}\right]$, then $V(A)=|\alpha| V(A)$.
Proof. First, suppose $\alpha>0$ Consider the rectangle $B=\left[a_{1}, a_{2}\right] \times \ldots \times\left[\alpha a_{i}, \alpha b_{i}\right] \times \ldots\left[a_{n}, b_{n}\right]$. I claim $L(A)=B$. First, suppose $x \in A$. Then, letting $a_{c} \in\left[a_{c}, b_{c}\right], x=\left(a_{1}, \ldots a_{i}, \ldots a_{n}\right)$. Then, $L(x)=\left(a_{1}, \ldots \alpha a_{i}, \ldots a_{n}\right) \in B$.

Now, suppose $x \in B$. Then, $x=\left(a_{1}, \ldots \alpha a_{i}, \ldots a_{n}\right)=L\left(a_{1}, \ldots a_{i}, \ldots a_{n}\right) \in L(A)$, so $x \in L(A)$. So, $L(A)=B$. Then, $V(L(A))=V(B)=\left(b_{1}-a_{1}\right) \ldots \alpha\left(b_{i}-a_{i}\right) \ldots\left(b_{n}-a_{n}\right)=\alpha\left(b_{1}-a_{1}\right) \ldots\left(b_{i}-a_{i}\right) \ldots\left(b_{n}-a_{n}\right)=\alpha V(A)=|\operatorname{det} L| V(A)$.

Now, consider $\alpha<0$. If we define $B=\left[a_{1}, a_{2}\right] \times \ldots \times\left[\alpha b_{i}, \alpha a_{i}\right] \times \ldots\left[a_{n}, b_{n}\right]$, a similar argument to before shows that $L(A)=B$. Then, $V(L(A))=V(B)=\left(b_{1}-a_{1}\right) \ldots \alpha\left(a_{i}-b_{i}\right) \ldots\left(b_{n}-a_{n}\right)=\left(b_{1}-a_{1}\right) \ldots(-\alpha)\left(b_{i}-a_{i}\right) \ldots\left(b_{n}-a_{n}\right)=$ $(-\alpha)\left(b_{1}-a_{1}\right) \ldots\left(b_{i}-a_{i}\right) \ldots\left(b_{n}-a_{n}\right)=-\alpha V(A)=|\operatorname{det} L| V(A)$.

Case 2: Consider the second type of operator. If $i<j$, then $\operatorname{det} L=-1$. If $i>j$, $\operatorname{det} L=1$. In both cases, $|\operatorname{det} L|=1$.

$$
L\left(e_{k}\right)= \begin{cases}e_{j} & k=i \\ e_{i} & k=j \\ e_{k} & \text { else }\end{cases}
$$

Lemma 3. If A is a rectangle of the form $\left[a_{1}, a_{2}\right] \times \ldots \times\left[a_{i}, b_{i}\right] \times \ldots \times\left[a_{j}, b_{j}\right] \times \ldots\left[a_{n}, b_{n}\right]$, then $V(A)=V(L(A))$. I'm proving this for $i<j$ since the $j>i$ case is nearly identical.

Proof. First, consider the rectangle $B=\left[a_{1}, a_{2}\right] \times \ldots \times\left[a_{j}, b_{j}\right] \times \ldots \times\left[a_{i}, b_{i}\right] \times \ldots\left[a_{n}, b_{n}\right]$. I claim that $L(A)=B$. First, suppose $x \in A$. Then, letting $a_{c} \in\left[a_{c}, b_{c}\right], x=\left(a_{1}, \ldots a_{i}, \ldots a_{j}, \ldots a_{n}\right) . L(x)=\left(a_{1}, \ldots a_{j}, \ldots a_{i}, \ldots a_{n}\right) \in B$. Now, suppose $x \in B$. Then, $x=\left(a_{1}, \ldots a_{j}, \ldots a_{i}, \ldots a_{n}\right)$. But then $x=L\left(a_{1}, \ldots a_{i}, \ldots a_{j}, \ldots a_{n}\right)$. So, $x \in L(A)$. Thus, $B=L(A)$. Now, $V(L(A))=V(B)=\left(b_{1}-a_{1}\right) \ldots\left(b_{j}-a_{j}\right) \ldots\left(b_{i}-a_{i}\right) \ldots\left(b_{n}-a_{n}\right)=1 \cdot V(A)=|\operatorname{det} L| \cdot V(A)$.

Case 3: Consider the third type of operator. Wlog, we can let L be an operator of the form

$$
L\left(e_{k}\right)= \begin{cases}e_{2}+e_{1} & k=1 \\ e_{k} & \text { else }\end{cases}
$$

Since if it isn't, it can be made into one by applying certain operators of form (2) to A, which we already know don't change the volume of A.

Lemma 4. If A is a rectangle of the form $\left[a_{1}, a_{2}\right] \times \ldots \times\left[a_{n}, b_{n}\right]$, and $R=\left[c_{1}, d_{1}\right] \times \ldots \times\left[c_{n}, d_{n}\right]$ is a rectangle containing both A and $L(A)$, then $V(L(A))=|\operatorname{det}(L)| V(A)=V(A) \quad($ since $\operatorname{det}(L)=1)$.

Proof. We know that $V(L(A))=\int_{R} \chi_{L(A)}=\int_{R} \chi_{A} L^{-1}$. Then, consider the function $\chi_{i,\left(a_{1}, \ldots a_{n-1}\right)}(x): \mathbb{R} \rightarrow \mathbb{R}$ defined by $\chi_{i,\left(a_{1}, \ldots a_{n-1}\right)}(x)=\chi_{A} L^{-1}\left(a_{1}, \ldots x_{i}, \ldots a_{n-1}\right)$. For any i and $\left(a_{1}, \ldots x_{i}, \ldots a_{n}\right)$, this function is discontinuous at at most two points, the points where the line $\left\{\left(a_{1}, \ldots x_{i}, \ldots a_{n}\right): x_{i} \in \mathbb{R}\right\}$ intersects $L(A)$.

Now, apply fubini's theorem:

$$
\int_{R} \chi_{L(A)}=\int_{c_{n}}^{d_{n}} \ldots \int_{c_{1}}^{d_{1}} \chi_{A} L^{-1}\left(x_{1}, \ldots x_{n}\right) d x_{1} \ldots d x_{n}
$$

We can use naive fubini here because at every step of the iterated integral we're integrating $\chi_{i,\left(a_{1}, \ldots a_{n-1}\right)}(x)$ for some i and $\left(a_{1}, \ldots a_{n-1}\right)$, which is continuous except at maybe two points. Now, we can rearrange the integrals:

$$
=\int_{c_{1}}^{d_{1}} \int_{c_{2}}^{d_{2}} \int_{c_{n}}^{d^{n}} \ldots \int_{c_{3}}^{d_{3}} \chi_{A} L^{-1}\left(x_{1}, \ldots x_{n}\right) d x_{3} \ldots d x_{n} d x_{2} d x_{1}
$$

Now, note that $L^{-1}\left(x_{1}, \ldots x_{n}\right)=\left(x_{1}, x_{2}-x_{1}, \ldots x_{n}\right)$. So, we have:

$$
\begin{align*}
& =\int_{c_{1}}^{d_{1}} \int_{c_{2}}^{d_{2}} \int_{c_{n}}^{d^{n}} \ldots \int_{c_{3}}^{d_{3}} \chi_{A}\left(x_{1}, x_{2}-x_{1}, \ldots x_{n}\right) d x_{3} \ldots d x_{n} d x_{2} d x_{1} \tag{1}\\
& =\int_{c_{1}}^{d_{1}} \int_{c_{2}}^{d_{2}}\left(\int_{c_{n}}^{d^{n}} \ldots \int_{c_{3}}^{d_{3}} \chi_{A}\left(x_{1}, x_{2}-x_{1}, \ldots x_{n}\right) d x_{3} \ldots d x_{n}\right) d x_{2} d x_{1} \tag{2}
\end{align*}
$$

Now, $\chi_{A}\left(x_{1}, x_{2}-x_{1}, \ldots x_{n}\right)$ is always 0 unless $x_{3} \in\left[a_{3}, b_{3}\right], \ldots, x_{n} \in\left[a_{n}, b_{n}\right]$, so our inner integral becomes:

$$
\int_{c_{n}}^{d^{n}} \ldots \int_{c_{3}}^{d_{3}} \chi_{A}\left(x_{1}, x_{2}-x_{1}, \ldots x_{n}\right) d x_{3} \ldots d x_{n}=\int_{a_{n}}^{b_{n}} \ldots \int_{a_{3}}^{b_{3}} \chi_{A}\left(x_{1}, x_{2}-x_{1}, \ldots x_{n}\right) d x_{3}, \ldots d x_{n}
$$

Now, the inner function is 1 if $x_{1} \in\left[a_{1}, b_{1}\right]$, and if $x_{2}-x_{1} \in\left[a_{2}, b_{2}\right]$, and 0 otherwise. If the inner function is equal to 1 , the integral becomes:

$$
\int_{a_{n}}^{b_{n}} \ldots \int_{a_{3}}^{b_{3}} \chi_{A}\left(x_{1}, x_{2}-x_{1}, \ldots x_{n}\right) d x_{3}, \ldots d x_{n}=\int_{a_{n}}^{b_{n}} \ldots \int_{a_{3}}^{b_{3}} 1 d x_{3}, \ldots d x_{n}=\left(b_{3}-a_{3}\right)\left(b_{4}-a_{4}\right) \ldots\left(b_{n}-a_{n}\right)
$$

So, we can define a new function, $X: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
X\left(x_{1}, x_{2}\right)= \begin{cases}\left(b_{3}-a_{3}\right)\left(b_{4}-a_{4}\right) \ldots\left(b_{n}-a_{n}\right) & x_{1} \in\left[a_{1}, b_{1}\right] \text { and } x_{2}-x_{\in}\left[a_{2}, b_{2}\right] \\ 0 & \text { else }\end{cases}
$$

and we're left with

$$
\int_{R} \chi_{L(A)}=\int_{c_{1}}^{d_{1}} \int_{c_{2}}^{d_{2}} X\left(x_{1}, x_{2}\right) d x_{2} d x_{1}
$$

But this function is 0 if $x_{2} \notin\left[a_{2}+x_{1}, b_{2}+x_{1}\right]$, and $x_{1} \notin\left[a_{1}, b_{1}\right]$, so the integral is equal to:

$$
\int_{a_{1}}^{b_{1}} \int_{a_{2}+x_{1}}^{b_{2}+x_{1}} X\left(x_{1}, x_{2}\right) d x_{2} d x_{1}
$$

And the function $X\left(x_{1}, x_{2}\right)$ is constant and equal to $\left(b_{3}-a_{3}\right)\left(b_{4}-a_{4}\right) \ldots\left(b_{n}-a_{n}\right)$ on those bounds, so we finally get:

$$
\int_{a_{1}}^{b_{1}} \int_{a_{2}+x_{1}}^{b_{2}+x_{1}} X\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=\int_{a_{1}}^{b_{1}}\left(b_{2}+x_{1}-a_{2}-x_{1}\right)\left(b_{3}-a_{3}\right) \ldots\left(b_{n}-a_{n}\right) d x_{1}=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right) \ldots\left(b_{n}-a_{n}\right)
$$

Which is equal to $V(A)$, so we're done.
Now, let R be a cube containing $A, L(A)$. Let P be a partition of R into cubes. Then, let $c_{1}, \ldots c_{n} \in P$ be cubes such that $c_{i} \subseteq A$. Let $d_{1}, \ldots d_{m} \in P$ be cubes such that $d_{i} \cap A \neq \emptyset$.

Consider $U\left(\chi_{A}, P\right)=\sum_{S \in P} \sup _{S} \chi_{A} V(s)$. Since $\sup _{S} \chi_{A} \neq 0 \Longleftrightarrow S \cap A \neq \emptyset$, we have that $U\left(\chi_{A}, P\right)=$ $\sum_{i=1}^{m} V\left(d_{i}\right)$. Similarly, $L\left(\chi_{A}, P\right)=\sum_{S \in P} \inf _{S} \chi_{A} V(s)$, and a term of this sum is nonzero iff $S \subseteq A$. So, again, the only nonzero terms are the ones corresponding to the c_{i} s, so $L\left(\chi_{A}, P\right)=\sum_{i=1}^{n} V\left(c_{i}\right)$.

Now, it's also true that

$$
\bigcup_{i=1}^{n} c_{i} \subseteq A \subseteq \bigcup_{i=1}^{m} d_{i}
$$

Then, we can apply one of the functions discussed above, and since they're all bijections, we get:

$$
\bigcup_{i=1}^{n} L c_{i} \subseteq L(A) \subseteq \bigcup_{i=1}^{m} L d_{i}
$$

Taking volumes, we get:

$$
\sum_{i=1}^{n} V\left(L c_{i}\right) \leq V(L(A)) \leq \sum_{i=1}^{m} V\left(L d_{i}\right)
$$

Since c_{i} and d_{i} are cubes, and therefore rectangles, we can apply the above lemmas to get:

$$
|\operatorname{det} L| \sum_{i=1}^{n} V\left(c_{i}\right) \leq V(L(A)) \leq|\operatorname{det} A| \sum_{i=1}^{m} V\left(d_{i}\right)
$$

and, using the identities from above:

$$
|\operatorname{det} L| L\left(\chi_{A}, P\right) \leq V(L(A)) \leq|\operatorname{det} A| U\left(\chi_{A}, P\right) V\left(d_{i}\right)
$$

And since the supremum of the left side is the infimum of the right side, due to A 's jordan measurably, we find that $|\operatorname{det} L| \int_{R} \chi_{A}=|\operatorname{det} L| V(A)=V(L(A))$, as desired.
c)

Now, consider some arbitrary linear map, L. If $\operatorname{det} L=0$, then it sends A to a lower dimensional subspace of \mathbb{R}^{n}, meaning that $L(A)$ is of measure 0 in \mathbb{R}^{n}, so $V(L(A))=0$. So, suppose $\operatorname{det} L \neq 0$. Then row reduction takes L to the identity. However, row reduction is equivalent to multiplying L by the three types of matricies given above, in some form. So, some product of the above types of matricies take L to the identity, meaning that this product is the inverse of L. Suppose $L^{-1}=A_{1} \ldots A_{n}$. Then, $L=A_{n}^{-1} \ldots A_{1}^{-1}$. All A_{n}^{-1} are of the same class of matrix as A_{n} was. Thus, L is a product of matrices of the above type.

Now, let n be the minimum number of matricies of the above type that multiply together to make L. We want to show by induction on n that $V(L(A))=|\operatorname{det} L| V(A)$. For our base case, take $n=1$. Then, L is one of the above types of matricies, and we're done.

Now, suppose for matricies L that are equal to the product of n matricies, $V(L(A))=|\operatorname{det} L| V(A)$. Suppose L is the product of $n+1$ matricies. Then, $L=M N$, where N is the product of n matricies and M is a matrix of the above type. Then, $V(L(A))=V(M N(A))=V(M(N(A)))$.
Let $B=N(A) V(B)=|\operatorname{det} N| V(A)$ by the inductive hypothesis. Then, $V(M(N(A)))=V(M(B))=|\operatorname{det} M| V(B)=$ $|\operatorname{det} M||\operatorname{det} N| V(A)=|\operatorname{det}(M N)| V(A)=|\operatorname{det} L| V(A)$, so we're done.

