
Q1

Let U1, ...Un be open sets covering the boundary of A (finitely many since the boundary of A has measure 0 and
thus content 0), with B =

⋃n
i=1 Ui, and V (U1) + ... + V (Un) < ε. B is a finite union of open sets, and is thus itself

open. Now, take C = A\B. We know C is closed since Cc is extA∪B, which is a union of open sets and thus open.
So, C is closed and contained in A, so it is bounded, meaning that C is compact.

Since C is closed, it contains its boundary. Now, if x is on the boundary of C, then any open ball containing
x must contain something in C and something not in C, so it must contain an element of B. Thus, x is also on
the boundary of B. So, Bd(C) ⊆ Bd(B). B is a union of open rectangles, so it is integrable. Thus, Bd(B) is of
measure 0. So, since Bd(C) ⊆ Bd(B), Bd(C) is also of measure 0. So, C is Jordan Measurable.

Now V (A\C) = V (A\(A\B)) = V (B) < ε.
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Q2

Suppose f : S ⊆ Rn → R.
If there doesn’t exist one point a for which D1,2f(a) − D2,1f(a) 6= 0, we’re done. If there’s a point a where
D1,2f(a)−D2,1f(a) 6= 0, then since D1,2f(a) and D2,1f(a) are continuous, we know that there’s an open rectangle
A around a with D1,2f(a) −D2,1f(a) 6= 0 (and in fact, the difference maintains the same sign) for all a ∈ A, and
let a = (a1, ...an).
Let A = (x1, x2)× (y1, y2)× (b3, b4)× ...× (b2n−1, b2n), and define

c ⊂ A = {(x, y) : (x, y, a3, ...an), x ∈ (x1, x2), y ∈ (y1, y2)}

Then, c == (x1, x2)× (y1, y2)
Now, consider the function g(x, y) = f(x, y, a3, ...an). We have G : C → R. Also, D1,2g(x, y) = D1,2f(x, y, a3, ...an),

and similar for D2,1g(x, y). If D1,2f(a) − D2,1f(a) 6= 0 (and difference maintains the same sign) on A, then
D1,2g(x, y)−D2,1g(x, y) 6= 0 (and the difference maintains the same sign) on c. Thus,∫

c

D1,2g(x, y)−D2,1g(x, y) 6= 0

Now, both D1,2g and D2,1g are continuous, so we can apply naive fubini.∫
c

D1,2g(x, y)−D2,1g(x, y) =

∫
c

D1,2g(x, y)−
∫
c

D2,1g(x, y)

=

∫
(y1,y2)

∫
(x1,x2)

∂

∂x

∂

∂y
g(x, y)dxdy −

∫
(x1,x2)

∫
(y1,y2)

∂

∂y

∂

∂x
g(x, y)dydx

(from naive Fubini)

=

∫ y2

y1

∫ x2

x1

∂

∂x

∂

∂y
g(x, y)dxdy −

∫ x2

x1

∫ y2

y1

∂

∂y

∂

∂x
g(x, y)dydx

=

∫ y2

y1

∂

∂y
(g(x2, y)− g(x1, y)dy −

∫ x2

x1

∂

∂x
(g(x, y2)− g(x, y1))dx

= g(x2, y2)− g(x1, y2)− g(x2, y1) + g(x1, y1)− [g(x2, y2)− g(x2, y1)− g(x1, y2) + g(x1, y1)]

= g(x2, y2)− g(x1, y2)− g(x2, y1) + g(x1, y1)− g(x2, y2) + g(x2, y1) + g(x1, y2)− g(x1, y1)

= 0

So, the integral is 0, meaning that no a exists such that D1,2f(a)−D2,1f(a) 6= 0. So, they’re equal and we’re done.
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Q3

Define C ⊆ [a, b] × [c, d] by C = [a, b] × [c, y] for some constant y. Then,

F (y) =

∫ b

a

f(x, y)dx =

∫ b

a

f(x, y)−f(x, c)+f(x, c)dx =

∫ b

a

∫ y

c

D2f(x, y)dy+f(x, c)dx =

∫
C

D2f(x, y)+

∫ b

a

f(x, c)dx

Then, we have:

F ′(y) =
d

dy
(

∫
C

D2f(x, y) +

∫ b

a

f(x, c)dx)

=
d

dy

∫
C

f(x, y)

=
d

dy

∫ y

c

∫ b

a

D2f(x, y)dxdy

=

∫ b

a

D2f(x, y)dx

As desired, so we’re done. Note that if we had F (x) =
∫ d

c
f(x, y)dy we could have applied the same argument to

show that F ′(x) =
∫ d

c
D1f(x, y)dy.
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Q4

First, consider

D1f(x, y) = D1

∫ x

0

g1(t, 0)dt + D1

∫ y

0

g2(x, t)dt

So, let’s find D1

∫ x

0
g1(t, 0)dt first. This is just equal to g1(x, 0). Now, for D1

∫ y

0
g2(x, t)dt, we can set h(x) =∫ y

0
g2(x, t)dt. Then, applying question 3, we get

h′(x) =

∫ y

0

D1g2(x, t)dt =

∫ y

0

D2g1(x, t)dt = g1(x, 0) − g1(x, y)

So,

D1f(x, y) = D1

∫ x

0

g1(t, 0)dt + D1

∫ y

0

g2(x, t)dt = g1(x, 0) + g1(x, y) − g1(x, 0) = g1(x, y)

So that’s done. Now, let’s consider

D2f(x, y) = D2

∫ x

0

g1(t, 0)dt + D2

∫ y

0

g2(x, t)dt

First, note that g1(t, 0) = D1f(t, 0), so we have:

D2

∫ x

0

D1f(t, 0)dt = D2(f(x, 0) − f(0, 0)) = 0

Now, D2

∫ y

0
g2(x, t)dt is just g2(x, y). So, putting it all together, we get:

D2f(x, y) = D2

∫ x

0

g1(t, 0)dt + D2

∫ y

0

g2(x, t)dt = 0 + g2(x, y) = g2(x, y)

So, we’re done.
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Q5

a) First, note that if A is bounded, so is L(A), since for each x ∈ A, |L(x)| ≤ C|x| for a specific c determined by
the linear map.
Since A is Jordan Measurable, we know that χA is discontinuous only on a set of measure 0. Now, we know that each
of the linear transformations provided are invertible, meaning they are bijections. Also, they’re continuous (since
linear transformations are continuous). Now, consider the function χ = χA ◦ L−1. If x ∈ L(A), χ(x) = χAL

−1(x).
Since L−1x ∈ A, χAL

−1(x) = 1. Similarly, if x /∈ L(A), L−1(x) /∈ A, so χ(x) = χAL
−1(x) = 0. So, we have that

χ = χL(A).

So, what are the discontinuities of χL(A) ◦ L−1? First of all, note that since the set of discontinuities of χA is
closed and of measure 0, so the set of discontinuities has content 0, we can find a list of rectangles U1, ...Uk which
cover the set of discontinuities of χA, and whose sum of volumes is less than ε for any given epsilon. Now, any
rectangle is the union of a finite number of n-cubes, so we can assume wlog that the U1, ...Uk are n-cubes, each with
side length li. So, the sum of the volumes of these cubes is ln1 + ...+ lnk .

Now:

Lemma 1. If B is a ball {x : |x− a| ≤ d}, and L is a bijection, then L(B) ⊆ {x : |x− La| ≤ Cd}.

Proof. We know that any linear operator L satisfies |Lx| ≤ C|x| for some C. Now, suppose x ∈ B. Then,
|Lx− La| = |L(x− a)| ≤ C|x− a| ≤ Cd, so |Lx− La| ≤ Cd, So L(B) ⊆ {x : |x− La| ≤ Cd}.

Let ε be given. We want to find a set of rectangles covering the discontinuities of χA ◦L−1 whose sum of volumes
is less than ε.

There exist U1, ...Uk covering the discontinuities of χA such that lni + ...+ lnk <
ε

2nCn .

Now, consider balls containing U1, ...Uk. Let Ui ⊂ Bi, with Bi being a ball of radius 2li. Now, L(Ui) ⊂ L(Bi) ⊂
B′i, where B′i is a ball of radius 2Cli (from the lemma). Note that since the Uia cover the set of discontinuities of
χA, and L−1 is a continuous bijection, then each discontinuity of χA ◦ L−1 is in one of the LUis, and therefore B′i.

Each B′i is contained in a cube of side length 2Cli, so the cubes Ci, ...Ck cover the set of discontinuities of
χA ◦ L−1. Then, the sum of the volumes of these cubes is (2Cl1)n + ...(2Clk)n = 2nCn (ln1 + ...lnk ). However, we
have picked our U1, ...Uk so that lni + ...+ lnk <

ε
2nCn , so we get:

k∑
i=1

V (Ci) = 2nCn (ln1 + ...lnk ) < 2nCn ε

2nCn
= ε

So, C1, ...Ck cover the set of discontinuities of χA ◦ L−1, and their volumes sum to less that ε, so the set of discon-
tinuities of χA ◦ L−1 is of measure 0.

But, we established that χA ◦ L−1 = χL(A), meaning that the set of discontinuities of χL(A) is of measure 0, so
L(A) is Jordan measurable.
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b)

Case 1: Consider the first type of operator, of the form

L(ek) =

{
αei k = i

ek else

Note that detL = α.

Lemma 2. If A is a rectangle of the form [a1, a2]× ...× [ai, bi]× ...[an, bn], then V (A) = |α|V (A).

Proof. First, suppose α > 0 Consider the rectangle B = [a1, a2] × ... × [αai, αbi] × ...[an, bn]. I claim L(A) = B.
First, suppose x ∈ A. Then, letting ac ∈ [ac, bc], x = (a1, ...ai, ...an). Then, L(x) = (a1, ...αai, ...an) ∈ B.

Now, suppose x ∈ B. Then, x = (a1, ...αai, ...an) = L(a1, ...ai, ...an) ∈ L(A), so x ∈ L(A). So, L(A) = B.
Then, V (L(A)) = V (B) = (b1−a1)...α(bi−ai)...(bn−an) = α(b1−a1)...(bi−ai)...(bn−an) = αV (A) = |detL|V (A).

Now, consider α < 0. If we define B = [a1, a2]× ...× [αbi, αai]× ...[an, bn], a similar argument to before shows
that L(A) = B. Then, V (L(A)) = V (B) = (b1− a1)...α(ai− bi)...(bn− an) = (b1− a1)...(−α)(bi− ai)...(bn− an) =
(−α)(b1 − a1)...(bi − ai)...(bn − an) = −αV (A) = |detL|V (A).

Case 2: Consider the second type of operator. If i < j, then detL = −1. If i > j, detL = 1. In both cases,
|detL| = 1.

L(ek) =


ej k = i

ei k = j

ek else

Lemma 3. If A is a rectangle of the form [a1, a2] × ... × [ai, bi] × ... × [aj , bj ] × ...[an, bn], then V (A) = V (L(A)).
I’m proving this for i < j since the j > i case is nearly identical.

Proof. First, consider the rectangle B = [a1, a2]× ...× [aj , bj ]× ...× [ai, bi]× ...[an, bn]. I claim that L(A) = B. First,
suppose x ∈ A. Then, letting ac ∈ [ac, bc], x = (a1, ...ai, ...aj , ...an). L(x) = (a1, ...aj , ...ai, ...an) ∈ B. Now, suppose
x ∈ B. Then, x = (a1, ...aj , ...ai, ...an). But then x = L(a1, ...ai, ...aj , ...an). So, x ∈ L(A). Thus, B = L(A). Now,
V (L(A)) = V (B) = (b1 − a1)...(bj − aj)...(bi − ai)...(bn − an) = 1 · V (A) = |detL| · V (A).

Case 3: Consider the third type of operator. Wlog, we can let L be an operator of the form

L(ek) =

{
e2 + e1 k = 1

ek else

Since if it isn’t, it can be made into one by applying certain operators of form (2) to A, which we already know
don’t change the volume of A.

Lemma 4. If A is a rectangle of the form [a1, a2] × ... × [an, bn], and R = [c1, d1] × ... × [cn, dn] is a rectangle
containing both A and L(A), then V (L(A)) = |det(L)|V (A) = V (A) (since det(L) = 1).

Proof. We know that V (L(A)) =
∫
R
χL(A) =

∫
R
χAL

−1. Then, consider the function χi,(a1,...an−1)(x) : R → R
defined by χi,(a1,...an−1)(x) = χAL

−1(a1, ...xi, ...an−1). For any i and (a1, ...xi, ...an), this function is discontinuous
at at most two points, the points where the line {(a1, ...xi, ...an) : xi ∈ R} intersects L(A).

Now, apply fubini’s theorem:∫
R

χL(A) =

∫ dn

cn

...

∫ d1

c1

χAL
−1(x1, ...xn)dx1...dxn
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We can use naive fubini here because at every step of the iterated integral we’re integrating χi,(a1,...an−1)(x) for
some i and (a1, ...an−1), which is continuous except at maybe two points. Now, we can rearrange the integrals:

=

∫ d1

c1

∫ d2

c2

∫ dn

cn

...

∫ d3

c3

χAL
−1(x1, ...xn)dx3...dxndx2dx1

Now, note that L−1(x1, ...xn) = (x1, x2 − x1, ...xn). So, we have:

=

∫ d1

c1

∫ d2

c2

∫ dn

cn

...

∫ d3

c3

χA(x1, x2 − x1, ...xn)dx3...dxndx2dx1 (1)

=

∫ d1

c1

∫ d2

c2

(∫ dn

cn

...

∫ d3

c3

χA(x1, x2 − x1, ...xn)dx3...dxn

)
dx2dx1 (2)

Now, χA(x1, x2 − x1, ...xn) is always 0 unless x3 ∈ [a3, b3], ..., xn ∈ [an, bn], so our inner integral becomes:∫ dn

cn

...

∫ d3

c3

χA(x1, x2 − x1, ...xn)dx3...dxn =

∫ bn

an

...

∫ b3

a3

χA(x1, x2 − x1, ...xn)dx3, ...dxn

Now, the inner function is 1 if x1 ∈ [a1, b1], and if x2 − x1 ∈ [a2, b2], and 0 otherwise. If the inner function is equal
to 1, the integral becomes:∫ bn

an

...

∫ b3

a3

χA(x1, x2 − x1, ...xn)dx3, ...dxn =

∫ bn

an

...

∫ b3

a3

1dx3, ...dxn = (b3 − a3)(b4 − a4)...(bn − an)

So, we can define a new function, X : R2 → R by

X(x1, x2) =

{
(b3 − a3)(b4 − a4)...(bn − an) x1 ∈ [a1, b1] and x2 − x∈[a2, b2]

0 else

and we’re left with ∫
R

χL(A) =

∫ d1

c1

∫ d2

c2

X(x1, x2)dx2dx1

But this function is 0 if x2 /∈ [a2 + x1, b2 + x1], and x1 /∈ [a1, b1], so the integral is equal to:∫ b1

a1

∫ b2+x1

a2+x1

X(x1, x2)dx2dx1

And the function X(x1, x2) is constant and equal to (b3 − a3)(b4 − a4)...(bn − an) on those bounds, so we finally
get:∫ b1

a1

∫ b2+x1

a2+x1

X(x1, x2)dx2dx1 =

∫ b1

a1

(b2 + x1 − a2 − x1)(b3 − a3)...(bn − an)dx1 = (b1 − a1)(b2 − a2)...(bn − an)

Which is equal to V (A), so we’re done.

Now, let R be a cube containing A,L(A). Let P be a partition of R into cubes. Then, let c1, ...cn ∈ P be cubes
such that ci ⊆ A. Let d1, ...dm ∈ P be cubes such that di ∩A 6= ∅.

Consider U(χA, P ) =
∑

S∈P supS χAV (s). Since supS χA 6= 0 ⇐⇒ S ∩ A 6= ∅, we have that U(χA, P ) =∑m
i=1 V (di). Similarly, L(χA, P ) =

∑
S∈P infS χAV (s), and a term of this sum is nonzero iff S ⊆ A. So, again, the

only nonzero terms are the ones corresponding to the cis, so L(χA, P ) =
∑n

i=1 V (ci).
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Now, it’s also true that
n⋃

i=1

ci ⊆ A ⊆
m⋃
i=1

di

Then, we can apply one of the functions discussed above, and since they’re all bijections, we get:

n⋃
i=1

Lci ⊆ L(A) ⊆
m⋃
i=1

Ldi

Taking volumes, we get:
n∑

i=1

V (Lci) ≤ V (L(A)) ≤
m∑
i=1

V (Ldi)

Since ci and di are cubes, and therefore rectangles, we can apply the above lemmas to get:

|detL|
n∑

i=1

V (ci) ≤ V (L(A)) ≤ |detA|
m∑
i=1

V (di)

and, using the identities from above:

|detL|L(χA, P ) ≤ V (L(A)) ≤ |detA|U(χA, P )V (di)

And since the supremum of the left side is the infimum of the right side, due to A’s jordan measurably, we find that
|detL|

∫
R
χA = |detL|V (A) = V (L(A)), as desired.

c)

Now, consider some arbitrary linear map, L. If detL = 0, then it sends A to a lower dimensional subspace of Rn,
meaning that L(A) is of measure 0 in Rn, so V (L(A)) = 0. So, suppose detL 6= 0. Then row reduction takes L to
the identity. However, row reduction is equivalent to multiplying L by the three types of matricies given above, in
some form. So, some product of the above types of matricies take L to the identity, meaning that this product is
the inverse of L. Suppose L−1 = A1...An. Then, L = A−1n ...A−11 . All A−1n are of the same class of matrix as An

was. Thus, L is a product of matrices of the above type.

Now, let n be the minimum number of matricies of the above type that multiply together to make L. We want
to show by induction on n that V (L(A)) = |detL|V (A). For our base case, take n = 1. Then, L is one of the above
types of matricies, and we’re done.

Now, suppose for matricies L that are equal to the product of n matricies, V (L(A)) = |detL|V (A). Suppose L
is the product of n+ 1 matricies. Then, L = MN , where N is the product of n matricies and M is a matrix of the
above type. Then, V (L(A)) = V (MN(A)) = V (M(N(A))).
LetB = N(A) V (B) = |detN |V (A) by the inductive hypothesis. Then, V (M(N(A))) = V (M(B)) = |detM |V (B) =
|detM ||detN |V (A) = |det(MN)|V (A) = |detL|V (A), so we’re done.
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