Q1

a) We know that $f \geq \inf (f)$ and $g \geq \inf (g)$. Thus, $f+g \geq \inf (f)+\inf (g)$, meaning that $\inf (f)+\inf (g)$ is a lower bound for $f+g$. Since $\inf (f+g)$ is the greatest lower bound for $f+g$, we have that $\inf (f+g) \geq \inf (f)+\inf (g)$. If we consider restrictions of f, g and thus $f+g$ to some set A, this still holds true. In particular, restricting all functions to S, we have $m_{s}(f)+m_{s}(g) \leq m_{s}(f+g)$.

Similarly, $f \leq \sup (f)$, and $g \leq \sup (g)$, so $f+g \leq \sup (f)+\sup (g) \Longrightarrow \sup (f+g) \leq \sup (f)+\sup (g)$, and again, this holds true provided we consider all supremums on the same domain, so $M_{s}(f+g) \leq M_{s}(f)+M_{s}(g)$.

Then,

$$
\begin{aligned}
L(f, P)+L(g, P) & \left.=\sum_{s \in P} m_{s}(f) v(s)+\sum_{s \in P} m_{s}(g) v_{(} s\right) \\
& =\sum_{s \in P} v(s)\left(m_{s}(f)+m_{s}(g)\right) \\
& \leq \sum_{s \in P} v(s) m_{s}(f+g) \\
& =L(f+g, P)
\end{aligned}
$$

So,

$$
L(f, P)+L(g, P) \leq L(f+g, P)
$$

Similarly,

$$
\begin{aligned}
U(f, P)+G(f, P) & =\sum_{s \in P} M_{s}(f) v(s)+\sum_{s \in P} M_{s}(g) v(s) \\
& =\sum_{s \in P} v(s)\left(M_{s}(f)+M_{s}(g)\right) \\
& \geq \sum_{s \in P} v(s) M_{s}(f+g) \\
& =L(f+g, P)
\end{aligned}
$$

Thus,

$$
U(f, P)+U(g, P) \geq U(f+g, P)
$$

b) Let ε be given. We want to show that there exists a partition P with $U(f+g, P)-L(f+g, P)<\varepsilon$. We know that both f and g are integrable, so we can pick partitions P_{1} and P_{2} with

$$
\begin{aligned}
& U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\frac{\varepsilon}{2} \\
& U\left(g, P_{2}\right)-L\left(g, P_{2}\right)<\frac{\varepsilon}{2}
\end{aligned}
$$

And if we pick a P refining P_{1} and P_{2}, say, for simplicity, $P_{1} \cap P_{2}$, we find:

$$
\begin{aligned}
& U(f, P)-L(f, P)<\frac{\varepsilon}{2} \\
& U(g, P)-L(g, P)<\frac{\varepsilon}{2}
\end{aligned}
$$

Now, we can just add these two inequalities to get:

$$
U(f, P)+U(g, P)-(L(f, P)+L(g, P))<\varepsilon
$$

But

$$
U(f, P)+U(g, P)-(L(f, P)+L(g, P)) \geq U(f+g, P)-L(f+g, P)
$$

So, $U(f+g, P)-L(f+g, P)<\varepsilon$, so $f+g$ is integrable.
Now, we want to find $\inf (U(f+g, P)$. (We could also find $\sup (L(f+g, P))$, since we know that they're equal), Since $f+g$ is integrable, this value is equal to the value $\int_{A} f+g$.

Now, recall that since f, g are integrable, $\int_{A} f+\int_{A} g=\sup (L(f, P))+\sup (L(g, P))$. So, note that

$$
U(f, P)+U(g, P) \geq U(f+g, P) \geq L(f+g, P) \geq L(f, P)+L(g, P)
$$

So,

$$
U(f, P)+U(g, P) \geq L(f+g, P) \geq L(f, P)+L(g, P)
$$

Thus,

$$
U(f, P)-L(f, P)+U(g, P)-L(g, P) \geq L(f+g, P)-(L(f, P)+L(g, P))
$$

So, for all $\varepsilon>0$, there exits a P where

$$
\varepsilon>L(f+g, P)-(L(f, P)+L(g, P)) \geq L(f+g, P)-(\sup (L(f, P))+\sup (L(g, P))) \geq 0
$$

Specifically,

$$
\varepsilon>L(f+g, P)-(L(f)+L(g)) \geq 0
$$

(Using $L(f)=\sup (L(f, P))$ and similar for g)
Which means that $L(f+g)=L(f)+L(g)$, meaning $\int_{A} f+g=L(f+g)=L(f)+L(g)=\int_{A} f+\int_{A} g$.
c)

First of all, if $c=0$, then $c f=0$, which is obviously integrable with integral 0 . So, for the rest of this, let $c \neq 0$.
If f is integrable, then for any given partition P,

$$
U(c f, P)=\sum_{s \in P} M_{s}(f) v(s)=\sum_{s \in P} \sup (c f) v(s)=\sum_{s \in P} c \sup (f) v(s)=c \sum_{s \in P} \sup (f) v(s)=c U(f, P)
$$

Similarly, $L(c f, P)=c L(f, P)$. Let's first show that $c f$ is integrable.
Let ε be given. Then, $U(c f, P)-L(c f, P)=c(U(f, P)-L(f, P)$. Since f is integrable, there exists a partition P where $U(f, P)-L(f, P)<\frac{\varepsilon}{c}$. Then, using that P, we have $U(c f, P)-L(c f, P)=c(U(f, P)-L(f, P))<c_{\frac{\varepsilon}{c}}^{\varepsilon}=\varepsilon$, so $c f$ is integrable.

We want to find $\sup (L(c f, P))$. Note that this is equal to $c \sup (L(f, P))$. But, we know that $\sup (L(f, P))=\int_{A} f$, so $\sup (L(c f, P))=c \int_{A} f$, as desired.

Q2

First, assume f is integrable on A. That means that for all $\varepsilon>0 \exists P_{1}$ with $U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\varepsilon$. In order to show that $\left.F\right|_{s}$ is integrable, we want to show that there exists a partition, P_{s}, of s, with $U\left(\left.F\right|_{s}, P_{s}\right)-L\left(\left.F\right|_{s}, P_{s}\right)<\varepsilon$.

Consider the partition $P_{2}=P \cup P_{1}$. Then, we know that P_{2} contains the endpoints of each $s \in P$. Furthermore, it is the union of nearly disjoint partitions of each $s \in P$. Specifically, $P_{2}=\cup_{s \in P} P_{s}$, where P_{s} is a partitioning of s.

That means that $U\left(f, P_{2}\right)=\sum_{s^{\prime} \in P_{2}} M_{s^{\prime}}(f) v\left(s^{\prime}\right)=\sum_{s \in P} \sum_{s^{\prime} \in P_{s}} M_{s^{\prime}}(f) v\left(s^{\prime}\right)$, since each $s^{\prime} \in P_{2}$ is also in some P_{s}. Then, since on a given rectangle S, each $f=\left.F\right|_{S}$, we can write:

$$
U\left(f, P_{2}\right)=\sum_{s \in P} \sum_{s^{\prime} \in P_{s}} M_{s^{\prime}}\left(\left.F\right|_{S}\right) v\left(s^{\prime}\right)=\sum_{s \in P} U\left(\left.F\right|_{S}, P_{s}\right)
$$

By a similar argument, $L\left(f, P_{2}\right)=\sum_{s \in P} \sum_{s^{\prime} \in P_{s}} M_{s^{\prime}}(f) v\left(s^{\prime}\right)$ So,

$$
L\left(f, P_{2}\right)=\sum_{s \in P} \sum_{s^{\prime} \in P_{s}} m_{s^{\prime}}\left(\left.F\right|_{S}\right) v\left(s^{\prime}\right)=\sum_{s \in P} L\left(\left.F\right|_{S}, P_{s}\right)
$$

But, since P_{2} is a refinement of P_{1}, we know that

$$
U\left(f, P_{2}\right)-L\left(f, P_{2}\right) \leq U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\varepsilon
$$

So, $U\left(f, P_{2}\right)-L\left(f, P_{2}\right)<\varepsilon$. But, expanding the sums, we get:

$$
U\left(f, P_{2}\right)-L\left(f, P_{2}\right)=\sum_{s \in P} U\left(\left.F\right|_{S}, P_{s}\right)-\sum_{s \in P} L\left(\left.F\right|_{S}, P_{s}\right)=\sum_{s \in P} U\left(\left.F\right|_{S}, P_{s}\right)-L\left(\left.F\right|_{S}, P_{s}\right)<\varepsilon
$$

But, each term of the rightmost sum is nonnegative, so each term of the sum must be less than ε. Thus, $\left.F\right|_{S}$ is integrable on each $s \in P$.

Now, note that $\int_{A} f=L(f)$. We know $L(f)=\sup L\left(f, P_{3}\right)$. Now, wlog, assume $P \subseteq P_{3}$. Then, we know $L(f)=\sup \left(\sum_{s \in P} \sum_{s^{\prime} \in S_{p}} m_{s^{\prime}}(f) v(s)\right)=\sup \sum_{s \in P} L\left(\left.F\right|_{S}, P_{s}\right)$. However, as we refine the partition P_{3}, which P_{s} is a subset of, we also refine the P_{s} 's. Thus, as P_{3} becomes arbitrarily refined, and $\sum_{s \in P} L\left(\left.F\right|_{S}, P_{s}\right)$ approaches its supremum, so does each term of the sum. Thus, $\sup \sum_{s \in P} L\left(\left.F\right|_{S}, P_{s}\right)=\sum_{s \in P} \sup L\left(\left.F\right|_{S}, P_{s}\right)$. But, since we already know that $\left.F\right|_{S}$ is integrable on each s, then we have $\int_{A} f=L(f)=\left.\sum_{s \in P} \int_{s} F\right|_{S}$, as desired.

Now, for the other direction, assume each $\left.F\right|_{S}$ integrable on s. Then, let k be the number of rectangles in P_{s}. Let ε be given. We know that there exists a P_{s} for each s where

$$
U\left(\left.F\right|_{S}, P_{s}\right)-L\left(\left.F\right|_{S}, P_{s}\right)<\frac{\varepsilon}{k}
$$

Then, letting $P_{1}=\cup_{s \in P} P_{s}$, we have:

$$
U\left(f, P_{1}\right)=\sum_{s_{1} \in P_{1}} M_{s}(f) v(s)=\sum_{s \in P} \sum_{s^{\prime} \in P_{s}} M_{s^{\prime}} v\left(s^{\prime}\right)=\sum_{s \in P} U\left(\left.F\right|_{S}, P_{s}\right)
$$

and similarly,

$$
L\left(f, P_{1}\right)=\sum_{s \in P} L\left(F \mid s, P_{s}\right)
$$

So,

$$
U\left(f, P_{1}\right)-L\left(f, P_{1}\right)=\sum_{s \in P} U\left(\left.F\right|_{S}, P_{s}\right)-L\left(\left.F\right|_{S}, P_{s}\right)<\sum_{s \in P} \frac{\varepsilon}{k}=k \frac{\varepsilon}{k}=\varepsilon
$$

So, f is integrable on A.
To find the integral of f, we'll use essentially the same argument as for the first direction. Wlog, take a partition P_{2} where $P \subseteq P_{2}$. Then, find the supremum of $L\left(f, P_{2}\right)$ under refinements of P_{2} :

$$
L(f)=\sup L\left(f, P_{2}\right)=\sup \sum_{s \in P} L\left(\left.F\right|_{S}, P_{s}\right)=\sum_{s \in P} \sup L\left(\left.F\right|_{S}, P_{s}\right)=\left.\sum_{s \in P} \int_{s} F\right|_{S}
$$

And we're done.
©

Q3
Since f and g are integrable, we know that $L(f)=U(f)=\int_{A} f$, and similarly for g. Now, we have:

$$
\begin{equation*}
U(f)=\sup \sum_{s \in P} M_{s}(f) v(s) \tag{1}
\end{equation*}
$$

Now, we know that $M_{s}(f)$ is the supremum of f on the rectangle s. Since $f \leq g$, we know that on all rectangles s, that $\sup f \leq \sup g$. Thus, $M_{s}(g) \geq M_{s}(f)$. Then, we have:

$$
\begin{equation*}
\sum_{s \in P} M_{s}(f) v(s) \leq \sum_{s \in P} M_{s}(g) v(s) \Longrightarrow \sup \sum_{s \in P} M_{s}(f) v(s) \leq \sup \sum_{s \in P} M_{s}(g) v(s) \tag{2}
\end{equation*}
$$

So, we get:

$$
\int_{A} f=\sup \sum_{s \in P} M_{s}(f) v(s) \leq \sup \sum_{s \in P} M_{s}(g) v(s)=\int_{A} g
$$

So, $\int_{A} f \leq \int_{A} g$, as desired.

Q4

Let s be some rectangle with a nonempty intersection with A. I want to show that $M_{s}(|f|)-m_{s}(|f|) \leq M_{s}(f)-$ $m_{s}(f)$. We have a couple of cases. First, if $M_{s}(f)-m_{s}(f)$ have the same sign, then $M_{s}(|f|)-m_{s}(|f|)=$ $M_{s}(f)-m_{s}(f)$. If they have different signs, then in particular, $m_{s}(f)<0$, and $M_{s}(f) \geq 0$. Then, note that $M_{s}(|f|)=\left|m_{s}(f)\right|$.

In that case,

$$
M_{s}(|f|)-m_{s}(|f|) \leq M_{s}(|f|)=\left|m_{s}(f)-0\right| \leq\left|m_{s}(f)-M_{s}(f)\right|
$$

Where the last inequality comes from the fact that $M_{s}(f) \geq 0$. So, we have:

$$
M_{s}(|f|)-m_{s}(|f|) \leq \mid m_{s}(f)-M_{s}(f)=M_{s}(f)-m_{s}(f)
$$

So, in both cases, we have

$$
M_{s}(|f|)-m_{s}(|f|) \leq M_{s}(f)-m_{s}(f)
$$

As desired.
Now, we want to show that $|f|$ is integrable. Note that $|f|$ is bounded, since f is bounded. Then, we want to show that for all $\varepsilon>0$ there exists a P such that $U(|f|, P)-L(|f|, P)<\varepsilon$. So, let ε be given.

Then, we know since f is integrable, we can find a p such that

$$
U(f, P)-L(f, P)<\varepsilon
$$

But:

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{s \in P} v(s)\left(M_{s}(f)-m_{s}(f)\right) \\
& \geq \sum_{s \in P} v(s)\left(M_{s}(|f|)-m_{s}(|f|)\right) \\
& =U(|f|, P)-L(|f|, P)
\end{aligned}
$$

So, we have

$$
\varepsilon>U(f, P)-L(f, P) \geq U(|f|, P)-L(|f|, P)
$$

Meaning

$$
\varepsilon>U(|f|, P)-L(|f|, P)
$$

as desired. So, $|f|$ is integrable.
Now, note that since f is integrable, $\inf U(f, P)=U(f)=\int_{A} f$. Then, we have two cases. First, suppose that $U(f, P) \geq 0$. Then, note that:

$$
\begin{aligned}
U(f, P) & =\sum_{s \in P} M_{s}(f) v(s) \\
& \leq \sum_{s \in P} M_{s}(|f|) v(s) \\
& =U(|f|, P)
\end{aligned}
$$

With the last inequality coming from the fact that $M_{s}(f) \leq M_{s}(|f|)$. So,

$$
U(f, P) \leq U(|f|, P) \Longrightarrow U(f) \leq U(|f|)
$$

And, since we're assuming that $U(f) \geq 0$, we have:

$$
\left|\int_{A}(f)\right|=|U(f)|=U(f) \leq U(|f|)=\int_{A}|f|
$$

And we're done.
Now, assume that $U(f) \leq 0$. Then, we know that there's some partition P where $U(f, P)<0$. In that case, a lower bound for $U(f, P)$ is an upper bound for $|U(f, P)|$, meaning that $|U(f)|=|\inf U(f, P)|=\sup |U(f, P)|$. Now:

$$
\begin{aligned}
|U(f, P)| & =\left|\sum_{s \in P} M_{s}(f) v(s)\right| \\
& \leq \sum_{s \in P}\left|M_{s}(f)\right| v(s) \\
& \leq \sum_{s \in P} M_{s}(|f|) v(s) \\
& =U(|f|, P)
\end{aligned}
$$

So, we have $|U(f, P)| \leq U(|f|, P)$. Therefore, $\sup |U(f, P)| \leq \inf U(|f|, P)$. Then:

$$
\left|\int_{A} f\right|=|\inf U(f, P)|=\sup |U(f, P)| \leq \inf U(|f|, P)=U(|f|)=\int_{A}|f|
$$

Which is what we wanted, so we've covered both cases, and are therefore done.

Q5
a)

Let A be some unbounded set, and let $\left\{U_{1}, \ldots U_{n}\right\}$ be a list of closed rectangles. In particular, we know each U_{i} is bounded. Then,

$$
\bigcup_{i=1}^{n} U_{i}
$$

is bounded, since it's a finite union of bounded sets. So, it can't cover A, since A is not bounded. Thus, no finite list of open rectangles covers A, so A does not have content 0 .
b)

Consider the x axis in \mathbb{R}^{2}. It has measure 0 , since for all $\varepsilon>0$ we can cover it with closed rectangles of the form
$U_{k}=\left[-\frac{k \varepsilon}{4}, \frac{k \varepsilon}{4}\right] \times\left[-\frac{1}{k 2^{k+1}}, \frac{1}{k 2^{k+1}}\right]$. Then, any point of the form $(a, 0) \in \mathbb{R}^{2}$ is clearly in one of the U_{k}, but the volume of each U_{k} is:

$$
v\left(U_{k}\right)=\frac{k \varepsilon}{2} \frac{1}{k 2^{k}}=\frac{\varepsilon}{2} \frac{1}{2^{k}}
$$

Meaning that $\sum_{k=1}^{\infty} U_{k}=\frac{\varepsilon}{2}\left(\sum_{k=1}^{\infty} \frac{1}{2^{k}}\right)=\frac{\varepsilon}{2}$.
So, the x axis is of measure 0 in \mathbb{R}^{2}, but it is unbounded, and therefore does not have content 0 .

First, consider the set $A^{\prime}=A \cap[0,1]$. Then, $A^{\prime} \subseteq[0,1]$, and we know from pset 1 q 6 that $b d\left(A^{\prime}\right)=[0,1]-A^{\prime}=$ $[0,1]-A$.

Furthermore, if a point in $(0,1)$ is on the boundary of A^{\prime}, it is obviously also on the boundary of A. However, 0,1 are always on the boundary of A^{\prime}, and may not be on the boundary of A (it in fact might be the case that they always are on the boundary of A, but it actually doesn't matter). Thus, $b d\left(A^{\prime}\right)=b d(A) \cap(0,1) \cup\{0,1\}=[0,1]-A$.

However, if $[0,1]-A$ is not of measure 0 , then we know that $b d(A) \cap(0,1)$ must not be of measure 0 , since if it was we'd have $b d(A) \cap(0,1) \cup\{0,1\}$ being the union of two measure 0 sets, which would be of measure 0 . If $b d(A) \cap(0,1)$ is not of measure 0 , neither is $b d(A)$, since $b d(A) \cap(0,1) \subseteq A$. Thus, $[0,1]-A$ not being of measure 0 implies that $b d(A)$ is not of measure 0 .

Now, note that since $A=\bigcup_{i-1}^{\infty}\left(a_{i}, b_{i}\right)$, we know that $\left\{\left[a_{i}, b_{i}\right]\right\}$ covers A. Suppose for the sake of contradiction that the set $[0,1]-A$ is of measure 0 . Then, we can cover it with closed rectangles U_{j}, with the property that for all ε there exists a set of closed rectangles U_{j} with $\sum_{i=1}^{\infty} v\left(U_{i}\right)<\varepsilon$.

Now, let $\left\{U_{j}\right\}$ be some arbitrary set of rectangles covering $[0,1]-A$. Then, $\left\{U_{j}\right\}$ covers $[0,1]-A$, and $\left\{\left[a_{i}, b_{i}\right]\right\}$ covers A, so the union of these two sets covers $[0,1]$. So, $\sum_{j=1}^{\infty} v\left(U_{j}\right)+\sum_{i=1}^{\infty} v\left(\left[a_{i}, b_{i}\right]\right) \geq v([0,1])=1$. Thus:

$$
\sum_{i=1}^{\infty} v\left(\left[a_{i}, b_{i}\right]\right) \geq 1-\sum_{j=1}^{\infty} v\left(U_{j}\right)
$$

And this is true for all sets $\left\{U_{i}\right\}$ that cover $[0,1]-A$. So, for any number $a<1$, we can set $\varepsilon=1-a$ and find a cover of $[0,1]-A$ with $\sum_{j=1}^{\infty} v\left(U_{j}\right)<\varepsilon$. But then:

$$
\begin{aligned}
\sum_{i=1}^{\infty} v\left(\left[a_{i}, b_{i}\right]\right) & \geq 1-\sum_{j=1}^{\infty} v\left(U_{j}\right) \\
& >1-\varepsilon \\
& =1-(1-a) \\
& =a
\end{aligned}
$$

Meaning for all $a<1$ we have:

$$
\sum_{i=1}^{\infty} v\left(\left[a_{i}, b_{i}\right]\right)>a
$$

So, $\sum_{i=1}^{\infty} v\left(\left[a_{i}, b_{i}\right]\right) \geq 1$. But:

$$
\sum_{i=1}^{\infty} v\left(\left[a_{i}, b_{i}\right]\right)=\sum_{i=1}^{\infty} b_{i}-a_{i}>1
$$

Which we know to be not the case, so $[0,1]-A$ cannot be of measure 0 , and thus neither can $b d(A)$, so we're done.

Q7

First, consider $o(f, x)$. We have defined $o(f, x)=\lim _{r \rightarrow 0} o\left(f, B_{r}(x)\right)=\lim _{r \rightarrow 0} \sup _{B_{r}(x)}(f)-\inf _{B_{r}(x)}(f)$. Now, consider $x_{1}>x$. Then, we we can pick r such that $x_{1} \notin B_{r}(x)$. Then, we know that the supremum of x in this ball is less than x_{1}, meaning that the supremum of f on this ball is less than or equal to $f\left(x_{1}\right)$, meaning that the supremum of f over all possible balls around x is also less than or equal to $f\left(x_{1}\right)$. Similarly, if $x_{2}<x$, then the infimum of f over all possible balls around x is greater than or equal to $f\left(x_{2}\right)$. So then, $o(f, x) \leq f\left(x_{1}\right)-f\left(x_{2}\right)$.

Then, suppose we have $x_{1}<x_{2}, \ldots x_{n}$. First, assume that $x_{1} \neq a, x_{n} \neq b$. Then, we can find $y_{1}, y_{2}, \ldots y_{n}$ with $y_{1}=a<x_{1}<y_{2}<x_{2} \ldots<y_{n}<x_{n}<b=y_{n+1}$. Then, we know that $o\left(f, x_{i}\right) \leq f\left(y_{i+1}\right)-f\left(y_{i}\right)$ for each i. Then:

$$
o\left(f, x_{1}\right)+\ldots+o\left(f, x_{n}\right) \leq f\left(y_{2}\right)-f(a)+f\left(y_{3}\right)-f\left(y_{2}\right)+\ldots+f(b)-f\left(y_{n}\right)=f(b)-f(a)
$$

Since the above sum telescopes.
Now, if $x_{1}=a$ or $x_{n}=b$, note that on all balls, $\inf _{B_{r}(a)} f=f(a)$, since f is an increasing function, and $\sup _{B_{r}(a)} f=f(b)$. Then, for $x_{1}>a$, we have:

$$
o(f, a) \leq f\left(x_{1}\right)-f(a)
$$

and for $x_{2}<b$, we have:

$$
o(f, b) \leq f(b)-f\left(x_{2}\right)
$$

In which case we can apply essentially the same telescoping argument as above to find that, indeed, $o\left(f, x_{1}\right)+$ $\ldots o\left(f, x_{n}\right) \leq f(b)-f(a)$.

Now, we know that the set of discontinuities of f is given by $\bigcup_{n=1}^{\infty}\left\{x: o(f, x) \geq \frac{1}{n}\right\}$. I claim that each set $\left\{x: o(f, x) \geq \frac{1}{n}\right\}$ is finite. Suppose it wasn't. Then, in particular, there are more than $n(c e i l(f(a)-f(b))+1)$ unique elements in each set. Denote this number by $c=n(\operatorname{ceil}(f(a)-f(b))+1)$. Then, take $x_{1}, \ldots x_{c}$. We then have:

$$
o\left(f, x_{1}\right)+\ldots+o\left(f, x_{c}\right) \geq c \frac{1}{n}=(\operatorname{ceil}(f(b)-f(a))+1)>f(b)-f(a)
$$

Which contradicts our earlier conclusion that

$$
o\left(f, x_{1}\right)+\ldots+o\left(f, x_{c}\right) \leq f(b)-f(a)
$$

Thus, each set $\left\{x: o(f, x) \geq \frac{1}{n}\right\}$ must have a finite number of elements. In fact, each set must have fewer than c elements! So, if each set in the union $\bigcup_{n=1}^{\infty}\left\{x: o(f, x) \geq \frac{1}{n}\right\}$ is finite, in particular, each set in the union is measure 0 . Then, we know that a countable union of measure 0 sets is also measure 0 , so the whole union is measure 0 . Since this union is the set of discontinuities of f, we're done.

