
Q1

a) We know that f ≥ inf(f) and g ≥ inf(g). Thus, f + g ≥ inf(f) + inf(g), meaning that inf(f) + inf(g) is a lower
bound for f + g. Since inf(f + g) is the greatest lower bound for f + g, we have that inf(f + g) ≥ inf(f) + inf(g).
If we consider restrictions of f, g and thus f + g to some set A, this still holds true. In particular, restricting all
functions to S, we have ms(f) + ms(g) ≤ ms(f + g).

Similarly, f ≤ sup(f), and g ≤ sup(g), so f + g ≤ sup(f) + sup(g) =⇒ sup(f + g) ≤ sup(f) + sup(g), and
again, this holds true provided we consider all supremums on the same domain, so Ms(f + g) ≤Ms(f) + Ms(g).

Then,

L(f, P ) + L(g, P ) =
∑
s∈P

ms(f)v(s) +
∑
s∈P

ms(g)v(s)

=
∑
s∈P

v(s)(ms(f) + ms(g))

≤
∑
s∈P

v(s)ms(f + g)

= L(f + g, P )

So,
L(f, P ) + L(g, P ) ≤ L(f + g, P )

Similarly,

U(f, P ) + G(f, P ) =
∑
s∈P

Ms(f)v(s) +
∑
s∈P

Ms(g)v(s)

=
∑
s∈P

v(s)(Ms(f) + Ms(g))

≥
∑
s∈P

v(s)Ms(f + g)

= L(f + g, P )

Thus,
U(f, P ) + U(g, P ) ≥ U(f + g, P )

b) Let ε be given. We want to show that there exists a partition P with U(f + g, P )− L(f + g, P ) < ε. We know
that both f and g are integrable, so we can pick partitions P1 and P2 with

U(f, P1)− L(f, P1) <
ε

2

U(g, P2)− L(g, P2) <
ε

2

And if we pick a P refining P1 and P2, say, for simplicity, P1 ∩ P2, we find:

U(f, P )− L(f, P ) <
ε

2

U(g, P )− L(g, P ) <
ε

2
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Now, we can just add these two inequalities to get:

U(f, P ) + U(g, P )− (L(f, P ) + L(g, P )) < ε

But
U(f, P ) + U(g, P )− (L(f, P ) + L(g, P )) ≥ U(f + g, P )− L(f + g, P )

So, U(f + g, P )− L(f + g, P ) < ε, so f + g is integrable.

Now, we want to find inf(U(f + g, P ). (We could also find sup(L(f + g, P )), since we know that they’re equal),
Since f + g is integrable, this value is equal to the value

∫
A
f + g.

Now, recall that since f, g are integrable,
∫
A
f +

∫
A
g = sup(L(f, P )) + sup(L(g, P )). So, note that

U(f, P ) + U(g, P ) ≥ U(f + g, P ) ≥ L(f + g, P ) ≥ L(f, P ) + L(g, P )

So,
U(f, P ) + U(g, P ) ≥ L(f + g, P ) ≥ L(f, P ) + L(g, P )

Thus,
U(f, P )− L(f, P ) + U(g, P )− L(g, P ) ≥ L(f + g, P )− (L(f, P ) + L(g, P ))

So, for all ε > 0, there exits a P where

ε > L(f + g, P )− (L(f, P ) + L(g, P )) ≥ L(f + g, P )− (sup(L(f, P )) + sup(L(g, P ))) ≥ 0

Specifically,
ε > L(f + g, P )− (L(f) + L(g)) ≥ 0

(Using L(f) = sup(L(f, P )) and similar for g)

Which means that L(f + g) = L(f) + L(g), meaning
∫
A
f + g = L(f + g) = L(f) + L(g) =

∫
A
f +

∫
A
g.

c)

First of all, if c = 0, then cf = 0, which is obviously integrable with integral 0. So, for the rest of this, let c 6= 0.
If f is integrable, then for any given partition P ,

U(cf, P ) =
∑
s∈P

Ms(f)v(s) =
∑
s∈P

sup(cf)v(s) =
∑
s∈P

c sup(f)v(s) = c
∑
s∈P

sup(f)v(s) = cU(f, P )

Similarly, L(cf, P ) = cL(f, P ). Let’s first show that cf is integrable.

Let ε be given. Then, U(cf, P )− L(cf, P ) = c(U(f, P )− L(f, P ). Since f is integrable, there exists a partition
P where U(f, P )−L(f, P ) < ε

c . Then, using that P , we have U(cf, P )−L(cf, P ) = c(U(f, P )−L(f, P )) < c εc = ε,
so cf is integrable.

We want to find sup(L(cf, P )). Note that this is equal to c sup(L(f, P )). But, we know that sup(L(f, P )) =
∫
A
f ,

so sup(L(cf, P )) = c
∫
A
f , as desired.
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Q2

First, assume f is integrable on A. That means that for all ε > 0 ∃P1 with U(f, P1) − L(f, P1) < ε. In order to
show that F |s is integrable, we want to show that there exists a partition, Ps, of s, with U(F |s, Ps)−L(F |s, Ps) < ε.

Consider the partition P2 = P ∪P1. Then, we know that P2 contains the endpoints of each s ∈ P . Furthermore,
it is the union of nearly disjoint partitions of each s ∈ P . Specifically, P2 = ∪s∈PPs, where Ps is a partitioning of s.

That means that U(f, P2) =
∑

s′∈P2
Ms′(f)v(s′) =

∑
s∈P

∑
s′∈Ps

Ms′(f)v(s′), since each s′ ∈ P2 is also in some
Ps. Then, since on a given rectangle S, each f = F |S , we can write:

U(f, P2) =
∑
s∈P

∑
s′∈Ps

Ms′(F |S)v(s′) =
∑
s∈P

U(F |S , Ps)

By a similar argument, L(f, P2) =
∑

s∈P

∑
s′∈Ps

Ms′(f)v(s′) So,

L(f, P2) =
∑
s∈P

∑
s′∈Ps

ms′(F |S)v(s′) =
∑
s∈P

L(F |S , Ps)

But, since P2 is a refinement of P1, we know that

U(f, P2)− L(f, P2) ≤ U(f, P1)− L(f, P1) < ε

So, U(f, P2)− L(f, P2) < ε. But, expanding the sums, we get:

U(f, P2)− L(f, P2) =
∑
s∈P

U(F |S , Ps)−
∑
s∈P

L(F |S , Ps) =
∑
s∈P

U(F |S , Ps)− L(F |S , Ps) < ε

But, each term of the rightmost sum is nonnegative, so each term of the sum must be less than ε. Thus, F |S is
integrable on each s ∈ P .

Now, note that
∫
A
f = L(f). We know L(f) = supL(f, P3). Now, wlog, assume P ⊆ P3. Then, we know

L(f) = sup(
∑

s∈P

∑
s′∈Sp

ms′(f)v(s)) = sup
∑

s∈P L(F |S , Ps). However, as we refine the partition P3, which Ps

is a subset of, we also refine the Ps’s. Thus, as P3 becomes arbitrarily refined, and
∑

s∈P L(F |S , Ps) approaches
its supremum, so does each term of the sum. Thus, sup

∑
s∈P L(F |S , Ps) =

∑
s∈P supL(F |S , Ps). But, since we

already know that F |S is integrable on each s, then we have
∫
A
f = L(f) =

∑
s∈P

∫
s
F |S , as desired.

Now, for the other direction, assume each F |S integrable on s. Then, let k be the number of rectangles in Ps.
Let ε be given. We know that there exists a Ps for each s where

U(F |S , Ps)− L(F |S , Ps) <
ε

k

Then, letting P1 = ∪s∈PPs, we have:

U(f, P1) =
∑

s1∈P1

Ms(f)v(s) =
∑
s∈P

∑
s′∈Ps

Ms′v(s′) =
∑
s∈P

U(F |S , Ps)

and similarly,

L(f, P1) =
∑
s∈P

L(F |s, Ps)

So,

U(f, P1)− L(f, P1) =
∑
s∈P

U(F |S , Ps)− L(F |S , Ps) <
∑
s∈P

ε

k
= k

ε

k
= ε
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So, f is integrable on A.

To find the integral of f , we’ll use essentially the same argument as for the first direction. Wlog, take a partition
P2 where P ⊆ P2. Then, find the supremum of L(f, P2) under refinements of P2:

L(f) = supL(f, P2) = sup
∑
s∈P

L(F |S , Ps) =
∑
s∈P

supL(F |S , Ps) =
∑
s∈P

∫
s

F |S

And we’re done.

,
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Q3

Since f and g are integrable, we know that L(f) = U(f) =
∫
A
f , and similarly for g. Now, we have:

U(f) = sup
∑
s∈P

Ms(f)v(s) (1)

Now, we know that Ms(f) is the supremum of f on the rectangle s. Since f ≤ g, we know that on all rectangles s,
that sup f ≤ sup g. Thus, Ms(g) ≥Ms(f). Then, we have:∑

s∈P

Ms(f)v(s) ≤
∑
s∈P

Ms(g)v(s) =⇒ sup
∑
s∈P

Ms(f)v(s) ≤ sup
∑
s∈P

Ms(g)v(s) (2)

So, we get: ∫
A

f = sup
∑
s∈P

Ms(f)v(s) ≤ sup
∑
s∈P

Ms(g)v(s) =

∫
A

g

So,
∫
A
f ≤

∫
A
g, as desired.
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Q4

Let s be some rectangle with a nonempty intersection with A. I want to show that Ms(|f |) −ms(|f |) ≤ Ms(f) −
ms(f). We have a couple of cases. First, if Ms(f) − ms(f) have the same sign, then Ms(|f |) − ms(|f |) =
Ms(f) − ms(f). If they have different signs, then in particular, ms(f) < 0, and Ms(f) ≥ 0. Then, note that
Ms(|f |) = |ms(f)|.

In that case,
Ms(|f |)−ms(|f |) ≤Ms(|f |) = |ms(f)− 0| ≤ |ms(f)−Ms(f)|

Where the last inequality comes from the fact that Ms(f) ≥ 0. So, we have:

Ms(|f |)−ms(|f |) ≤ |ms(f)−Ms(f) = Ms(f)−ms(f)

So, in both cases, we have
Ms(|f |)−ms(|f |) ≤Ms(f)−ms(f)

As desired.
Now, we want to show that |f | is integrable. Note that |f | is bounded, since f is bounded. Then, we want to

show that for all ε > 0 there exists a P such that U(|f |, P )− L(|f |, P ) < ε. So, let ε be given.

Then, we know since f is integrable, we can find a p such that

U(f, P )− L(f, P ) < ε

But:

U(f, P )− L(f, P ) =
∑
s∈P

v(s)(Ms(f)−ms(f))

≥
∑
s∈P

v(s)(Ms(|f |)−ms(|f |))

= U(|f |, P )− L(|f |, P )

So, we have
ε > U(f, P )− L(f, P ) ≥ U(|f |, P )− L(|f |, P )

Meaning
ε > U(|f |, P )− L(|f |, P )

as desired. So, |f | is integrable.
Now, note that since f is integrable, inf U(f, P ) = U(f) =

∫
A
f . Then, we have two cases. First, suppose that

U(f, P ) ≥ 0. Then, note that:

U(f, P ) =
∑
s∈P

Ms(f)v(s)

≤
∑
s∈P

Ms(|f |)v(s)

= U(|f |, P )

With the last inequality coming from the fact that Ms(f) ≤Ms(|f |). So,

U(f, P ) ≤ U(|f |, P ) =⇒ U(f) ≤ U(|f |)

And, since we’re assuming that U(f) ≥ 0, we have:∣∣∣∣∫
A

(f)

∣∣∣∣ = |U(f)| = U(f) ≤ U(|f |) =

∫
A

|f |
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And we’re done.

Now, assume that U(f) ≤ 0. Then, we know that there’s some partition P where U(f, P ) < 0. In that case,
a lower bound for U(f, P ) is an upper bound for |U(f, P )|, meaning that |U(f)| = | inf U(f, P )| = sup |U(f, P )|.
Now:

|U(f, P )| =

∣∣∣∣∣∑
s∈P

Ms(f)v(s)

∣∣∣∣∣
≤
∑
s∈P

|Ms(f)|v(s)

≤
∑
s∈P

Ms(|f |)v(s)

= U(|f |, P )

So, we have |U(f, P )| ≤ U(|f |, P ). Therefore, sup |U(f, P )| ≤ inf U(|f |, P ). Then:∣∣∣∣∫
A

f

∣∣∣∣ = | inf U(f, P )| = sup |U(f, P )| ≤ inf U(|f |, P ) = U(|f |) =

∫
A

|f |

Which is what we wanted, so we’ve covered both cases, and are therefore done.
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Q5

a)

Let A be some unbounded set, and let {U1, ...Un} be a list of closed rectangles. In particular, we know each Ui is
bounded. Then,

n⋃
i=1

Ui

is bounded, since it’s a finite union of bounded sets. So, it can’t cover A, since A is not bounded. Thus, no finite
list of open rectangles covers A, so A does not have content 0.

b)

Consider the x axis in R2. It has measure 0, since for all ε > 0 we can cover it with closed rectangles of the form
Uk = [−kε

4 , kε
4 ]× [− 1

k2k+1 ,
1

k2k+1 ]. Then, any point of the form (a, 0) ∈ R2 is clearly in one of the Uk, but the volume
of each Uk is:

v(Uk) =
kε

2

1

k2k
=

ε

2

1

2k

Meaning that
∑∞

k=1 Uk = ε
2

(∑∞
k=1

1
2k

)
= ε

2 .
So, the x axis is of measure 0 in R2, but it is unbounded, and therefore does not have content 0.
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Q6

First, consider the set A′ = A ∩ [0, 1]. Then, A′ ⊆ [0, 1], and we know from pset 1 q 6 that bd(A′) = [0, 1] − A′ =
[0, 1]−A.

Furthermore, if a point in (0, 1) is on the boundary of A′, it is obviously also on the boundary of A. However,
0, 1 are always on the boundary of A′, and may not be on the boundary of A (it in fact might be the case that they
always are on the boundary of A, but it actually doesn’t matter). Thus, bd(A′) = bd(A)∩ (0, 1)∪{0, 1} = [0, 1]−A.

However, if [0, 1] − A is not of measure 0, then we know that bd(A) ∩ (0, 1) must not be of measure 0, since if
it was we’d have bd(A) ∩ (0, 1) ∪ {0, 1} being the union of two measure 0 sets, which would be of measure 0. If
bd(A) ∩ (0, 1) is not of measure 0, neither is bd(A), since bd(A) ∩ (0, 1) ⊆ A. Thus, [0, 1]− A not being of measure
0 implies that bd(A) is not of measure 0.

Now, note that since A =
⋃∞

i−1(ai, bi), we know that {[ai, bi]} covers A. Suppose for the sake of contradiction
that the set [0, 1]− A is of measure 0. Then, we can cover it with closed rectangles Uj , with the property that for
all ε there exists a set of closed rectangles Uj with

∑∞
i=1 v(Ui) < ε.

Now, let {Uj} be some arbitrary set of rectangles covering [0, 1]−A. Then, {Uj} covers [0, 1]−A, and {[ai, bi]}
covers A, so the union of these two sets covers [0, 1]. So,

∑∞
j=1 v(Uj) +

∑∞
i=1 v([ai, bi]) ≥ v([0, 1]) = 1. Thus:

∞∑
i=1

v([ai, bi]) ≥ 1−
∞∑
j=1

v(Uj)

And this is true for all sets {Ui} that cover [0, 1] − A. So, for any number a < 1, we can set ε = 1 − a and find a
cover of [0, 1]−A with

∑∞
j=1 v(Uj) < ε. But then:

∞∑
i=1

v([ai, bi]) ≥ 1−
∞∑
j=1

v(Uj)

> 1− ε

= 1− (1− a)

= a

Meaning for all a < 1 we have:
∞∑
i=1

v([ai, bi]) > a

So,
∑∞

i=1 v([ai, bi]) ≥ 1. But:
∞∑
i=1

v([ai, bi]) =

∞∑
i=1

bi − ai > 1

Which we know to be not the case, so [0, 1]−A cannot be of measure 0, and thus neither can bd(A), so we’re done.
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Q7

First, consider o(f, x). We have defined o(f, x) = limr→0 o(f,Br(x)) = limr→0 supBr(x)(f) − infBr(x)(f). Now,
consider x1 > x. Then, we we can pick r such that x1 /∈ Br(x). Then, we know that the supremum of x in this
ball is less than x1, meaning that the supremum of f on this ball is less than or equal to f(x1), meaning that the
supremum of f over all possible balls around x is also less than or equal to f(x1). Similarly, if x2 < x, then the
infimum of f over all possible balls around x is greater than or equal to f(x2). So then, o(f, x) ≤ f(x1)− f(x2).

Then, suppose we have x1 < x2, ...xn. First, assume that x1 6= a, xn 6= b. Then, we can find y1, y2, ...yn with
y1 = a < x1 < y2 < x2... < yn < xn < b = yn+1. Then, we know that o(f, xi) ≤ f(yi+1)− f(yi) for each i. Then:

o(f, x1) + ... + o(f, xn) ≤ f(y2)− f(a) + f(y3)− f(y2) + ... + f(b)− f(yn) = f(b)− f(a)

Since the above sum telescopes.

Now, if x1 = a or xn = b, note that on all balls, infBr(a) f = f(a), since f is an increasing function, and
supBr(a) f = f(b). Then, for x1 > a, we have:

o(f, a) ≤ f(x1)− f(a)

and for x2 < b, we have:
o(f, b) ≤ f(b)− f(x2)

In which case we can apply essentially the same telescoping argument as above to find that, indeed, o(f, x1) +
...o(f, xn) ≤ f(b)− f(a).

Now, we know that the set of discontinuities of f is given by
⋃∞

n=1{x : o(f, x) ≥ 1
n}. I claim that each set

{x : o(f, x) ≥ 1
n} is finite. Suppose it wasn’t. Then, in particular, there are more than n(ceil(f(a) − f(b)) + 1)

unique elements in each set. Denote this number by c = n(ceil(f(a) − f(b)) + 1). Then, take x1, ...xc. We then
have:

o(f, x1) + ... + o(f, xc) ≥ c
1

n
= (ceil(f(b)− f(a)) + 1) > f(b)− f(a)

Which contradicts our earlier conclusion that

o(f, x1) + ... + o(f, xc) ≤ f(b)− f(a)

Thus, each set {x : o(f, x) ≥ 1
n} must have a finite number of elements. In fact, each set must have fewer than c

elements! So, if each set in the union
⋃∞

n=1{x : o(f, x) ≥ 1
n} is finite, in particular, each set in the union is measure

0. Then, we know that a countable union of measure 0 sets is also measure 0, so the whole union is measure 0.
Since this union is the set of discontinuities of f , we’re done.
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