MAT257 Problem Set 7

1) Let A be a rectangle in R" and let f,g: A — R be integrable.
a) For any partition P of A and any subrectangle S, show that

ms(f) +ms(g) <ms(f+g) and  Mg(f+yg) < Ms(f) + Ms(g)

and therefore,

L(f,P)+L(g,P) < L(f4+g9,P) and U(f+g,P)<U(f,P)+L(g,P)

b) Show that f + g is integrable and [,(f+g)= [, f+ [, 9-

c) For any constant ¢, show that cf is integrable and fA cf =cé€q
f.
Proof:

a) Note that for any two bounded sets A C B C R, we have that inf(B) <
inf A as

inf(A) ¢ A = inf(A) € B = inf(B) < inf(A)

and if inf(A) ¢ A, we have that if A’ = AU {inf(A)}, then inf(A") =
inf(A) so the previous argument holds.

Given any partition P of A and S € P, we have by definition
ms(f) +ms(g) = mf{f(z)+g(y): =,y €S}
ms(f+g9) = nf{f(z)+g(z):z €S}

Now if f(xg) 4+ g(zo) € {f(x) + g(x) : = € S}, then it is clearly also in
{f(x) +g(y): z,y € S} and so

{f(x)+g(z):xe S} C{f(x)+g(y):z,y €S}

which means
ms(f)+ms(g) = nf{f(x)+g(y) : x,y € S} <inf{f(x)+g(z) : © € S} = ms(f+g)
Therefore, we can conclude

L(f.P)+ L(g.P) = Y _ms(f)-V(S)+ > ms(g)-V(S)
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A similar argument shows that A C B C R implies sup(A4) < sup  B).

Given any partition P of A and S € P, we also have

Ms(f) + Ms(G) = sup{f(z) +g(y) :z,y € S}
Ms(f +g) = sup{f(r)+g(x):z €S}

Similarly, we have

{f(x) +g(z) 2 S} C{f(x) +9(y) s 2,y € 5}

and so we can conclude that

Ms(f +g) < Ms(f) + Ms(g)

Therefore, we have

U(f+g.P) = Y Ms(f+g)-V(S)

SepP

< 37 (Ms(f) + Ms(g)) - V(S)

Sep

= > Ms(f) V(S)+ D Ms(g) - V(S)
= U(f,P)+Ul(g,P)

b) Given any € > 0, we can find partitions P; and P, of A so that

U(fapf)_L(f7Pf)< and U(g,Pg)—L<g,Pg)<

N
N

Let P be a refinement of Py and P,. Then by part (a), we have

+e
2

IN

A
[N NCRG Y

and so f + g is integrable. This means that for any partition, P, we
have

L<f+g,P>s[4<f+g>sv<f+g,P>
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and combining with part (a) gives us

L(f.P) + L(g. P) < / (f +9) <U(f,P) + Ulg, P)

Since L(f, P)+ L(g, P) and U(f, P) +U(g, P) can be made arbitrarily

close, it follows that
/U+w=/f+/g
A A A

c) Let ¢ > 0. Let P be a partition of A so that
€

Then given any S € P, we have

ms(cf) = inf{cf(z)} = cinf{f(2)} = cms(f)
Ms(cf) = ilelg{cf(x)} = citelg{f(x)} = cM;s(f)

Then we have

Ulcf,P)— L(cf,P) = 3 Ms(cf)-V(S) = S ms(cf) - V(S)

Sep Sep

= > e(Ms(f) = ms(f)) - V(S)
SeP

= X (Ms(f) = ms(f)) - V(S)
SepP

= €
If ¢ < 0, then we have similar inequalities

ms(cf) =cMs(f) and Ms(cf) = cms(f)

Thus choosing a partition P so that
€

gives us (by a similar calculation) that

€

Ul(cef,P)— L(cf, P) = —c(U(f,P)—L(f,P)) < —Cc-— =¢
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If ¢ = 0, then cf is a constant function, namely c¢f(z) = 0 and we have
proven in class that constant functions are integrable.

Therefore, cf is integrable. If ¢ = 0, then c/ f= cing(f7 P) = / cf
A A

which is all equal to 0. If ¢ # 0, then notice that for any partition, P,

cL(f, P) and cU(f, P) bound both c/ f and / cf. Since the upper

A A
and lower sums can be made arbitrarily close, we conclude that

fio-ef



MAT257 Problem Set 7

2) Let f : A — R and let P be a partition of A. Show that f
is integrable if and only if for each subrectangle S the function
f|s, the restriction of f to S, is integrable, and that in this case,

fAf - ZSEP fs fls-

Proof: ( <= ) Suppose each f|g is integrable. Then given € > 0, there
exist partitions Pg of S so that

U(fls, Ps) = L(fls Ps) < &

where N is the number of subrectangles in P. Extend the edges of each
subrectangle of Ps so that it is a partition of A, and let () be the partition
which contains each Pg. In particular, () refines each Pg so

< £

N
Now for each R € @ with R C S, we have that Mgz(f) = Mg(f|s) and
mg(f) = mgr(f|s). Then letting S; be the subrectangles of P, we have

U(fls, Q) — L(f]s,Q)

U(f,Q) = L(f,Q) = Y V(R)- (Mg(f) —ma(f))
ReQ

= > VIR)- (Ma(f) = ma(f))

_ Z Z V(R) - (Mg(fls) —ms(fls))

and so f is integrable.

(= ) Now suppose f is integrable. Then given any € > 0, there exists some
partition () which refines P and satisfies

U(f,Q) = L(f,Q) <e

Let S € P and let Pg C @ be the set of subrectangles of ) which partitions
S. Note that f = f|s on S so their upper and lower sums are all equal as
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well. Then similar to the converse, we have

U(f,Q) — ZZV - (Mgr(fls) —ms(fls)) <e

i=1 REPg

Since V(R) and Mg(f|s) —ms(f|s) are both positive, their product is also
positive which means that

ZV (Mg (fls)—ms(fls)) ZZV (Mg(fls)—ms(fls)) <€

RePg i=1 REPg

which means f|g is integrable.

Note that if f|g is integrable, then the extension gs : A — R defined by

J flx) ifres
g(x)_{o if v ¢S

is also integrable since given any partition of S, we can extend it to a partition

of A, and the subrectangles that do not cover S have equal upper and lower

sums, namely 0, and so their difference do not contribute anything to the

upper and lower sums of subrectangles covering S. In particular, this means

fs fls = fA gs. Clearly, we have f = ng and by problem 3-3 of Spivak,
Sep

IR Z/gs—z/f\s

Sep SepP

we have
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3) Let f,g : A — R be integrable and suppose [ < g. Show that
Jal < Jag-

Proof: First we show that if an integrable function h : A — R satisfies
h(z) > 0 for all z € A, then / h > 0. Let P be any partition of A and let

A
S € P. Then note that 0 < h(z), for all x € S C A so mg(h) > 0. This

means that L(h, P) > 0 and since h is integrable, we have

OgL(h,P)gsupL(h,P):/h
P A

Now let h : A — R be the function h(z) = g(z) — f(z). By problem 1 of this
problem set, A is integrable and

Jr=lom )

Since g(x) > f(z) for all x € A, it follows that h(x) > 0 and so

o< [ [ 1= [12 ]
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4) If f : A — R is integrable, show that |f| is integrable and
[ JafI < [4l1L-

Proof: f is integrable so given any € > 0, there exists some partition P
of A so that

U(f,P)— L(f,P) <e

Given any S € P, we have three possibilities:
1) ms(f) < Ms(f) <0
2) ms(f) <0< Ms(f)
3) 0 <ms(f) < Ms(f)

In case (1), we have ms(|f|) = |Ms(f)| and Ms(|f|) = |ms(f)|, and so
Ms(If1) = ms(1f1) = Ms(f) = ms(f)

In case (3), we have mg(|f|) = ms(f) and Ms(|f|) = Ms(f) and so
Ms(If1) = ms(1f1) = Ms(f) = ms(f)

In case (2), we have Mg(|f]) = Ms(f) and 0 < ms(|f]) < |ms(f)| and
combining and rearranging gives us

ms(f) < —ms(|f]) <0< Ms(|f]) = Ms(f)

and so we get the inequality

Ms(|f]) = ms(If]) < Ms(f) —ms(f)

Thus we have

U(If1,P) = L(fL,P) = Y V(S)- (Ms(If]) = ms (1))

SeP

< D V(S) - (Ms(f) —ms(f))
SeP
< €

and so | f]| is integrable.

To show that | [, f| < [, |f], note that —|f| < f < [f| and by problem 3-5
of Spivak, we have

_/A\fIS/AfS/AIf!:‘/Af‘g/A\ﬂ
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5a) Show that an unbounded set cannot have content 0.

b) Give an example of a closed set of measure 0 which does not

have content 0.

Proof:

a) Suppose A € R™ has content zero. Then given any ¢ > 0, there exist
finitely many open rectangles Ry,..., Ry which cover A. Each R; is
a rectangle and so is bounded by the ball B(0,7;) for some r;. Let

r = max{ry,...,r;}. Then

k
Ac|JR cB(O,r)

i=1
and so A is bounded.

Consider the subset of R?

A= {(z,0): z € N} = {(0,0), (1,0), (2,0), ...

Define sets

B, = (i,i+1)xR forieN
C. = {(z,y) eR*:y <0}
C, = {(z,y) eR*:y >0}

= {(z,y) eR* 2 < 0}

Then each of these sets are open and their union

X = (UBl) UC_UC,.UD

1=0

is also open. Since A = R? — X, we have that A is indeed closed.
Since A is also countable, we have that it is measure zero. Since it is

unbounded, it does not have content zero.

}
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6) Let A =J;2,(a;,b;) be a countable union of open intervals, and
assume that ([0,1]NQ) C A. Show that if > °,(b; — a;) < 1 then the
boundary of A is not of measure 0.

Proof: Without loss of generality, we may assume that A C [0,1]. This
is because if A’ is some set which contains A, restricting to A’ N [0, 1] and
taking the boundary gives us

bd(A) =bd(A4'N0,1]) C bd(A") U{0,1}
and so if bd(A) does not have measure 0, neither will bd(A’).

Additionally, we may assume that {0,1} ¢ A as removing two points
would only change the boundary by finitely many points, which does not
affect whether the set is measure zero or not. More precisely, if A’ = A —
{0,1}, then problem 1-18 of Spivak

bd(A’) =[0,1] — A'=[0,1] — (A —{0,1}) = ([0,1] — A) U{0,1}

So by problem 1-18 of Spivak, we have that bd(A) = [0,1] — A. Since
A C [0,1], it follows that

bd(A)U A= ([0,1] —A)UA=]0,1]

Suppose S := Z(b, —a;) =1—¢, and suppose bd(A) has measure zero.
i=1

Then since A = U(ai,bi), it follows that A is covered by all the (a;,b;),
i=1
and so A has a ”length” of at most 1 — e. Then since bd(A) is measure zero,

. . . . € .
it can be covered with open intervals whose sum is less than 2 which means

the "length” of bd(A) is less than % Since the length of [0, 1] is 1, it follows

that ¢ . .
1<S4+-—=(1- - =1—-=-<1
< +2 ( e)+2 5

which is a contradiction.
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7) Let f :[a,b] — R be an increasing function. Show that the set of
discontinuities of f is of measure 0.

Spivak Problem 1-30: Given any increasing f : [a,b] — R and given distinct
x1,..., T, € |a,b], we have

n

> olf,xi) < f(b) = f(a)

i=1

Proof: By the definition of the oscillation, we have

o(f,z;) = lim o(f, (z;—r, z;+r)) = lim ( sup  f(z) — inf )f(x))

r—0t =0t \ ze(zi—razitr) x€(zi—r,@;i+1
Since f is increasing, we have

o(f,z;) = lim (f(xmtr) —f(xi—r))

r—0+t

Assume z; < -+ < x, and choose r > 0 small enough so that none of
any f(x; +r) or f(x; —r) are equal, for any i and j. Then there exist
midpoints between each consecutive pair of f(z;)’s, say x; < x,, < ;41 for
1 <i < n—1. Since f is increasing, we have for 2 < ¢ < n — 1, that
f(@i+r) < f(zm,) and f(z;—7) > f(2m, ), and that f(z, —7) > f(Tm, )
and f(z1+7) < f(xm,,), so we get a telescoping sum

n

Z(f(mz—l—?“ x-—r))
< [ +r)+ (i +f(xm1))> = flz1—7)

=2
= flxy+71)— flzry—1)

< f(b) = f(a)
This proves problem 1-30.

Problem Proof: Now given n € N, consider the set

D, = {we [a,b] : o(f,z) > l}

n

Then the set, D, of discontinuities of f is the union of all D,,. Suppose D,
is infinite. Pick distinct x4, ..., x,, € D, where

n(f(0) = f@) <m = 5> f(b) - f(a)



MAT257 Problem Set 7

Then by Spivak’s Problem 1-30, we have

> olf.x) >anﬂ>f b) — f(a)

which contradicts the same problem in Spivak. Thus D,, is necessarily finite.
Since D is a countable union of finite sets, D itself is countable and so is of
measure zero.



