1) Let A be a rectangle in \mathbb{R}^{n} and let $f, g: A \rightarrow \mathbb{R}$ be integrable.
a) For any partition P of A and any subrectangle S, show that

$$
m_{S}(f)+m_{S}(g) \leq m_{S}(f+g) \quad \text { and } \quad M_{S}(f+g) \leq M_{S}(f)+M_{S}(g)
$$

and therefore,

$$
L(f, P)+L(g, P) \leq L(f+g, P) \quad \text { and } \quad U(f+g, P) \leq U(f, P)+L(g, P)
$$

b) Show that $f+g$ is integrable and $\int_{A}(f+g)=\int_{A} f+\int_{A} g$.
c) For any constant c, show that $c f$ is integrable and $\int_{A} c f=c \in_{A}$ f.

Proof:

a) Note that for any two bounded sets $A \subset B \subset \mathbb{R}$, we have that $\inf (B) \leq$ $\inf A$ as

$$
\inf (A) \in A \Longrightarrow \inf (A) \in B \Longrightarrow \inf (B) \leq \inf (A)
$$

and $\operatorname{if} \inf (A) \notin A$, we have that if $A^{\prime}=A \cup\{\inf (A)\}$, then $\inf \left(A^{\prime}\right)=$ $\inf (A)$ so the previous argument holds.

Given any partition P of A and $S \in P$, we have by definition

$$
\begin{aligned}
m_{S}(f)+m_{S}(g) & =\inf \{f(x)+g(y): x, y \in S\} \\
m_{S}(f+g) & =\inf \{f(x)+g(x): x \in S\}
\end{aligned}
$$

Now if $f\left(x_{0}\right)+g\left(x_{0}\right) \in\{f(x)+g(x): x \in S\}$, then it is clearly also in $\{f(x)+g(y): x, y \in S\}$ and so

$$
\{f(x)+g(x): x \in S\} \subset\{f(x)+g(y): x, y \in S\}
$$

which means

$$
m_{S}(f)+m_{S}(g)=\inf \{f(x)+g(y): x, y \in S\} \leq \inf \{f(x)+g(x): x \in S\}=m_{S}(f+g)
$$

Therefore, we can conclude

$$
\begin{aligned}
L(f, P)+L(g, P) & =\sum_{S \in P} m_{S}(f) \cdot V(S)+\sum_{S \in P} m_{S}(g) \cdot V(S) \\
& =\sum_{S \in P} V(S) \cdot\left(m_{S}(f)+m_{S}(g)\right) \\
& \leq \sum_{S \in P} V(S) \cdot m_{S}(f+g) \\
& =L(f+g, P)
\end{aligned}
$$

A similar argument shows that $A \subset B \subset \mathbb{R}$ implies $\left.\sup (A) \leq \sup _{(} B\right)$.

Given any partition P of A and $S \in P$, we also have

$$
\begin{aligned}
M_{S}(f)+M_{S}(G) & =\sup \{f(x)+g(y): x, y \in S\} \\
M_{S}(f+g) & =\sup \{f(x)+g(x): x \in S\}
\end{aligned}
$$

Similarly, we have

$$
\{f(x)+g(x): x \in S\} \subset\{f(x)+g(y): x, y \in S\}
$$

and so we can conclude that

$$
M_{S}(f+g) \leq M_{S}(f)+M_{S}(g)
$$

Therefore, we have

$$
\begin{aligned}
U(f+g, P) & =\sum_{S \in P} M_{S}(f+g) \cdot V(S) \\
& \leq \sum_{S \in P}\left(M_{S}(f)+M_{S}(g)\right) \cdot V(S) \\
& =\sum_{S \in P} M_{S}(f) \cdot V(S)+\sum_{S \in P} M_{S}(g) \cdot V(S) \\
& =U(f, P)+U(g, P)
\end{aligned}
$$

b) Given any $\epsilon>0$, we can find partitions P_{f} and P_{g} of A so that

$$
U\left(f, P_{f}\right)-L\left(f, P_{f}\right)<\frac{\epsilon}{2} \quad \text { and } \quad U\left(g, P_{g}\right)-L\left(g, P_{g}\right)<\frac{\epsilon}{2}
$$

Let P be a refinement of P_{f} and P_{g}. Then by part (a), we have

$$
\begin{aligned}
& U(f+g, P)-L(f+g, P) \\
\leq & (U(f, P)-L(f, P))+(U(g, P)-L(g, P)) \\
< & \frac{\epsilon}{2}+\frac{\epsilon}{2}
\end{aligned}
$$

and so $f+g$ is integrable. This means that for any partition, P, we have

$$
L(f+g, P) \leq \int_{A}(f+g) \leq U(f+g, P)
$$

and combining with part (a) gives us

$$
L(f, P)+L(g, P) \leq \int_{A}(f+g) \leq U(f, P)+U(g, P)
$$

Since $L(f, P)+L(g, P)$ and $U(f, P)+U(g, P)$ can be made arbitrarily close, it follows that

$$
\int_{A}(f+g)=\int_{A} f+\int_{A} g
$$

c) Let $c>0$. Let P be a partition of A so that

$$
U(f, P)-L(f, P)<\frac{\epsilon}{c}
$$

Then given any $S \in P$, we have

$$
\begin{aligned}
m_{S}(c f) & =\inf _{x \in S}\{c f(x)\}=c \inf _{x \in s}\{f(x)\}=c m_{S}(f) \\
M_{S}(c f) & =\sup _{x \in S}\{c f(x)\}=c \sup _{x \in S}\{f(x)\}=c M_{S}(f)
\end{aligned}
$$

Then we have

$$
\begin{aligned}
U(c f, P)-L(c f, P) & =\sum_{S \in P} M_{S}(c f) \cdot V(S)-\sum_{S \in P} m_{S}(c f) \cdot V(S) \\
& =\sum_{S \in P} c\left(M_{S}(f)-m_{S}(f)\right) \cdot V(S) \\
& =c \sum_{S \in P}\left(M_{S}(f)-m_{S}(f)\right) \cdot V(S) \\
& \leq c-\bar{c} \\
& =\epsilon
\end{aligned}
$$

If $c<0$, then we have similar inequalities

$$
m_{S}(c f)=c M_{S}(f) \quad \text { and } \quad M_{S}(c f)=c m_{S}(f)
$$

Thus choosing a partition P so that

$$
U(f, P)-L(f, P)<-\frac{\epsilon}{c}
$$

gives us (by a similar calculation) that

$$
U(c f, P)-L(c f, P)=-c(U(f, P)-L(f, P))<-c \cdot \frac{\epsilon}{-c}=\epsilon
$$

If $c=0$, then $c f$ is a constant function, namely $c f(x)=0$ and we have proven in class that constant functions are integrable.

Therefore, $c f$ is integrable. If $c=0$, then $c \int_{A} f=c \inf _{P} U(f, P)=\int_{A} c f$ which is all equal to 0 . If $c \neq 0$, then notice that for any partition, P, $c L(f, P)$ and $c U(f, P)$ bound both $c \int_{A} f$ and $\int_{A} c f$. Since the upper and lower sums can be made arbitrarily close, we conclude that

$$
\int_{A} c f=c \int_{A} f
$$

2) Let $f: A \rightarrow \mathbb{R}$ and let P be a partition of A. Show that f is integrable if and only if for each subrectangle S the function $\left.f\right|_{S}$, the restriction of f to S, is integrable, and that in this case, $\int_{A} f=\left.\sum_{S \in P} \int_{S} f\right|_{S}$.

Proof: (\Longleftarrow) Suppose each $\left.f\right|_{S}$ is integrable. Then given $\epsilon>0$, there exist partitions P_{S} of S so that

$$
U\left(\left.f\right|_{S}, P_{S}\right)-L\left(\left.f\right|_{S}, P_{S}\right)<\frac{\epsilon}{N}
$$

where N is the number of subrectangles in P. Extend the edges of each subrectangle of P_{S} so that it is a partition of A, and let Q be the partition which contains each P_{S}. In particular, Q refines each P_{S} so

$$
U\left(\left.f\right|_{S}, Q\right)-L\left(\left.f\right|_{S}, Q\right)<\frac{\epsilon}{N}
$$

Now for each $R \in Q$ with $R \subset S$, we have that $M_{R}(f)=M_{R}\left(\left.f\right|_{S}\right)$ and $m_{R}(f)=m_{R}\left(\left.f\right|_{S}\right)$. Then letting S_{i} be the subrectangles of P, we have

$$
\begin{aligned}
U(f, Q)-L(f, Q) & =\sum_{R \in Q} V(R) \cdot\left(M_{R}(f)-m_{R}(f)\right) \\
& =\sum_{i=1}^{N} \sum_{\substack{R \in Q \\
R \subset S_{i}}} V(R) \cdot\left(M_{R}(f)-m_{R}(f)\right) \\
& =\sum_{i=1}^{N} \sum_{\substack{R \in Q \\
R \subset S_{i}}} V(R) \cdot\left(M_{R}\left(\left.f\right|_{S}\right)-m_{S}\left(\left.f\right|_{S}\right)\right) \\
& <\sum_{i=1}^{N} \frac{\epsilon}{N} \\
& =\epsilon
\end{aligned}
$$

and so f is integrable.
(\Longrightarrow) Now suppose f is integrable. Then given any $\epsilon>0$, there exists some partition Q which refines P and satisfies

$$
U(f, Q)-L(f, Q)<\epsilon
$$

Let $S \in P$ and let $P_{S} \subset Q$ be the set of subrectangles of Q which partitions S. Note that $f=\left.f\right|_{S}$ on S so their upper and lower sums are all equal as
well. Then similar to the converse, we have

$$
U(f, Q)-L(f, Q)=\sum_{i=1}^{N} \sum_{R \in P_{S}} V(R) \cdot\left(M_{R}\left(\left.f\right|_{S}\right)-m_{S}\left(\left.f\right|_{S}\right)\right)<\epsilon
$$

Since $V(R)$ and $M_{R}\left(\left.f\right|_{S}\right)-m_{S}\left(\left.f\right|_{S}\right)$ are both positive, their product is also positive which means that

$$
\sum_{R \in P_{S}} V(R) \cdot\left(M_{R}\left(\left.f\right|_{S}\right)-m_{S}\left(\left.f\right|_{S}\right)\right) \leq \sum_{i=1}^{N} \sum_{R \in P_{S}} V(R) \cdot\left(M_{R}\left(\left.f\right|_{S}\right)-m_{S}\left(\left.f\right|_{S}\right)\right)<\epsilon
$$

which means $\left.f\right|_{S}$ is integrable.
Note that if $\left.f\right|_{S}$ is integrable, then the extension $g_{S}: A \rightarrow \mathbb{R}$ defined by

$$
g(x)= \begin{cases}f(x) & \text { if } x \in S \\ 0 & \text { if } x \notin S\end{cases}
$$

is also integrable since given any partition of S, we can extend it to a partition of A, and the subrectangles that do not cover S have equal upper and lower sums, namely 0 , and so their difference do not contribute anything to the upper and lower sums of subrectangles covering S. In particular, this means $\left.\int_{S} f\right|_{S}=\int_{A} g_{S}$. Clearly, we have $f=\sum_{S \in P} g_{S}$ and by problem 3-3 of Spivak, we have

$$
\int_{A} f=\sum_{S \in P} \int_{A} g_{S}=\left.\sum_{S \in P} \int_{S} f\right|_{S}
$$

3) Let $f, g: A \rightarrow \mathbb{R}$ be integrable and suppose $f \leq g$. Show that $\int_{A} f \leq \int_{A} g$.

Proof: First we show that if an integrable function $h: A \rightarrow \mathbb{R}$ satisfies $h(x) \geq 0$ for all $x \in A$, then $\int_{A} h \geq 0$. Let P be any partition of A and let $S \in P$. Then note that $0 \leq h(x)$, for all $x \in S \subset A$ so $m_{S}(h) \geq 0$. This means that $L(h, P) \geq 0$ and since h is integrable, we have

$$
0 \leq L(h, P) \leq \sup _{P} L(h, P)=\int_{A} h
$$

Now let $h: A \rightarrow \mathbb{R}$ be the function $h(x)=g(x)-f(x)$. By problem 1 of this problem set, h is integrable and

$$
\int_{A} h=\int_{A} g-\int_{A} f
$$

Since $g(x) \geq f(x)$ for all $x \in A$, it follows that $h(x) \geq 0$ and so

$$
0 \leq \int_{A} g-\int_{A} f \Longrightarrow \int_{A} f \leq \int_{A} g
$$

4) If $f: A \rightarrow \mathbb{R}$ is integrable, show that $|f|$ is integrable and $\left|\int_{A} f\right| \leq \int_{A}|f|$.

Proof: f is integrable so given any $\epsilon>0$, there exists some partition P of A so that

$$
U(f, P)-L(f, P)<\epsilon
$$

Given any $S \in P$, we have three possibilities:

1) $m_{S}(f) \leq M_{S}(f) \leq 0$
2) $m_{S}(f) \leq 0 \leq M_{S}(f)$
3) $0 \leq m_{S}(f) \leq M_{S}(f)$

In case (1), we have $m_{S}(|f|)=\left|M_{S}(f)\right|$ and $M_{S}(|f|)=\left|m_{S}(f)\right|$, and so

$$
M_{S}(|f|)-m_{S}(|f|)=M_{S}(f)-m_{S}(f)
$$

In case (3), we have $m_{S}(|f|)=m_{S}(f)$ and $M_{S}(|f|)=M_{S}(f)$ and so

$$
M_{S}(|f|)-m_{S}(|f|)=M_{S}(f)-m_{S}(f)
$$

In case (2), we have $M_{S}(|f|)=M_{S}(f)$ and $0 \leq m_{S}(|f|) \leq\left|m_{S}(f)\right|$ and combining and rearranging gives us

$$
m_{S}(f) \leq-m_{S}(|f|) \leq 0 \leq M_{S}(|f|)=M_{S}(f)
$$

and so we get the inequality

$$
M_{S}(|f|)-m_{S}(|f|) \leq M_{S}(f)-m_{S}(f)
$$

Thus we have

$$
\begin{aligned}
U(|f|, P)-L(|f|, P) & =\sum_{S \in P} V(S) \cdot\left(M_{S}(|f|)-m_{S}(|f|)\right) \\
& \leq \sum_{S \in P} V(S) \cdot\left(M_{S}(f)-m_{S}(f)\right) \\
& <\epsilon
\end{aligned}
$$

and so $|f|$ is integrable.
To show that $\left|\int_{A} f\right| \leq \int_{A}|f|$, note that $-|f| \leq f \leq|f|$ and by problem 3-5 of Spivak, we have

$$
-\int_{A}|f| \leq \int_{A} f \leq \int_{A}|f| \Longrightarrow\left|\int_{A} f\right| \leq \int_{A}|f|
$$

5a) Show that an unbounded set cannot have content 0 .
b) Give an example of a closed set of measure 0 which does not have content 0 .

Proof:
a) Suppose $A \in \mathbb{R}^{n}$ has content zero. Then given any $\epsilon>0$, there exist finitely many open rectangles R_{1}, \ldots, R_{k} which cover A. Each R_{i} is a rectangle and so is bounded by the ball $B\left(0, r_{i}\right)$ for some r_{i}. Let $r=\max \left\{r_{1}, \ldots, r_{i}\right\}$. Then

$$
A \subset \bigcup_{i=1}^{k} R_{i} \subset B(0, r)
$$

and so A is bounded.
b) Consider the subset of \mathbb{R}^{2}

$$
A=\{(x, 0): x \in \mathbb{N}\}=\{(0,0),(1,0),(2,0), \ldots\}
$$

Define sets

$$
\begin{aligned}
B_{i} & =(i, i+1) \times \mathbb{R} \quad \text { for } i \in \mathbb{N} \\
C_{-} & =\left\{(x, y) \in \mathbb{R}^{2}: y<0\right\} \\
C_{+} & =\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\} \\
D & =\left\{(x, y) \in \mathbb{R}^{2}: x<0\right\}
\end{aligned}
$$

Then each of these sets are open and their union

$$
X=\left(\bigcup_{i=0}^{\infty} B_{i}\right) \cup C_{-} \cup C_{+} \cup D
$$

is also open. Since $A=\mathbb{R}^{2}-X$, we have that A is indeed closed. Since A is also countable, we have that it is measure zero. Since it is unbounded, it does not have content zero.
6) Let $A=\bigcup_{i=1}^{\infty}\left(a_{i}, b_{i}\right)$ be a countable union of open intervals, and assume that $([0,1] \cap \mathbb{Q}) \subset A$. Show that if $\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right)<1$ then the boundary of A is not of measure 0 .

Proof: Without loss of generality, we may assume that $A \subset[0,1]$. This is because if A^{\prime} is some set which contains A, restricting to $A^{\prime} \cap[0,1]$ and taking the boundary gives us

$$
\operatorname{bd}(A)=\operatorname{bd}\left(A^{\prime} \cap[0,1]\right) \subset \operatorname{bd}\left(A^{\prime}\right) \cup\{0,1\}
$$

and so if $\operatorname{bd}(A)$ does not have measure 0 , neither will $\operatorname{bd}\left(A^{\prime}\right)$.
Additionally, we may assume that $\{0,1\} \notin A$ as removing two points would only change the boundary by finitely many points, which does not affect whether the set is measure zero or not. More precisely, if $A^{\prime}=A-$ $\{0,1\}$, then problem 1-18 of Spivak

$$
\operatorname{bd}\left(A^{\prime}\right)=[0,1]-A^{\prime}=[0,1]-(A-\{0,1\})=([0,1]-A) \cup\{0,1\}
$$

So by problem 1-18 of Spivak, we have that $\operatorname{bd}(A)=[0,1]-A$. Since $A \subset[0,1]$, it follows that

$$
\operatorname{bd}(A) \cup A=([0,1]-A) \cup A=[0,1]
$$

Suppose $S:=\sum_{i=1}^{\infty}\left(b_{i}-a_{i}\right)=1-\epsilon$, and suppose $\operatorname{bd}(A)$ has measure zero. Then since $A=\bigcup_{i=1}^{\infty}\left(a_{i}, b_{i}\right)$, it follows that A is covered by all the $\left(a_{i}, b_{i}\right)$, and so A has a "length" of at most $1-\epsilon$. Then since $\operatorname{bd}(A)$ is measure zero, it can be covered with open intervals whose sum is less than $\frac{\epsilon}{2}$, which means the "length" of $\operatorname{bd}(A)$ is less than $\frac{\epsilon}{2}$. Since the length of $[0,1]$ is 1 , it follows that

$$
1 \leq S+\frac{\epsilon}{2}=(1-\epsilon)+\frac{\epsilon}{2}=1-\frac{\epsilon}{2}<1
$$

which is a contradiction.

7) Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function. Show that the set of discontinuities of f is of measure 0 .

$\underline{\text { Spivak Problem 1-30: Given any increasing } f:[a, b] \rightarrow \mathbb{R} \text { and given distinct }}$ $\overline{x_{1}, \ldots, x_{n} \in[a, b], \text { we have }}$

$$
\sum_{i=1}^{n} o\left(f, x_{i}\right)<f(b)-f(a)
$$

Proof: By the definition of the oscillation, we have

$$
o\left(f, x_{i}\right)=\lim _{r \rightarrow 0^{+}} o\left(f,\left(x_{i}-r, x_{i}+r\right)\right)=\lim _{r \rightarrow 0^{+}}\left(\sup _{x \in\left(x_{i}-r, x_{i}+r\right)} f(x)-\inf _{x \in\left(x_{i}-r, x_{i}+r\right)} f(x)\right)
$$

Since f is increasing, we have

$$
o\left(f, x_{i}\right)=\lim _{r \rightarrow 0^{+}}\left(f\left(x_{i}+r\right)-f\left(x_{i}-r\right)\right)
$$

Assume $x_{1}<\cdots<x_{n}$ and choose $r>0$ small enough so that none of any $f\left(x_{i}+r\right)$ or $f\left(x_{j}-r\right)$ are equal, for any i and j. Then there exist midpoints between each consecutive pair of $f\left(x_{i}\right)$'s, say $x_{i}<x_{m_{i}}<x_{i+1}$ for $1 \leq i \leq n-1$. Since f is increasing, we have for $2 \leq i \leq n-1$, that $f\left(x_{i}+r\right)<f\left(x_{m_{i}}\right)$ and $f\left(x_{i}-r\right)>f\left(x_{m_{i-1}}\right)$, and that $f\left(x_{n}-r\right)>f\left(x_{m_{n-1}}\right)$ and $f\left(x_{1}+r\right)<f\left(x_{m_{1}}\right)$, so we get a telescoping sum

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(f\left(x_{i}+r\right)-f\left(x_{i}-r\right)\right) \\
< & f\left(x_{n}+r\right)+\left(\sum_{i=2}^{n-1}\left(-f\left(x_{m_{i}}\right)+f\left(x_{m_{1}}\right)\right)\right)-f\left(x_{1}-r\right) \\
= & f\left(x_{n}+r\right)-f\left(x_{1}-r\right) \\
\leq & f(b)-f(a)
\end{aligned}
$$

This proves problem 1-30.
Problem Proof: Now given $n \in \mathbb{N}$, consider the set

$$
D_{n}=\left\{x \in[a, b]: o(f, x)>\frac{1}{n}\right\}
$$

Then the set, D, of discontinuities of f is the union of all D_{n}. Suppose D_{n} is infinite. Pick distinct $x_{1}, \ldots, x_{m} \in D_{n}$ where

$$
n(f(b)-f(a))<m \Longrightarrow \frac{m}{n}>f(b)-f(a)
$$

Then by Spivak's Problem 1-30, we have

$$
\sum_{i=1}^{m} o\left(f, x_{i}\right)>\sum_{i=1}^{m} \frac{1}{n}=\frac{m}{n}>f(b)-f(a)
$$

which contradicts the same problem in Spivak. Thus D_{n} is necessarily finite. Since D is a countable union of finite sets, D itself is countable and so is of measure zero.

