
MAT257 Problem Set 7

1) Let A be a rectangle in Rn and let f, g : A→ R be integrable.

a) For any partition P of A and any subrectangle S, show that

mS(f) +mS(g) ≤ mS(f + g) and MS(f + g) ≤MS(f) +MS(g)

and therefore,

L(f, P )+L(g, P ) ≤ L(f+g, P ) and U(f+g, P ) ≤ U(f, P )+L(g, P )

b) Show that f + g is integrable and
´
A

(f + g) =
´
A
f +
´
A
g.

c) For any constant c, show that cf is integrable and
´
A
cf = c ∈A

f .

Proof:

a) Note that for any two bounded sets A ⊂ B ⊂ R, we have that inf(B) ≤
infA as

inf(A) ∈ A =⇒ inf(A) ∈ B =⇒ inf(B) ≤ inf(A)

and if inf(A) /∈ A, we have that if A′ = A ∪ {inf(A)}, then inf(A′) =
inf(A) so the previous argument holds.

Given any partition P of A and S ∈ P , we have by definition

mS(f) +mS(g) = inf{f(x) + g(y) : x, y ∈ S}

mS(f + g) = inf{f(x) + g(x) : x ∈ S}

Now if f(x0) + g(x0) ∈ {f(x) + g(x) : x ∈ S}, then it is clearly also in
{f(x) + g(y) : x, y ∈ S} and so

{f(x) + g(x) : x ∈ S} ⊂ {f(x) + g(y) : x, y ∈ S}

which means

mS(f)+mS(g) = inf{f(x)+g(y) : x, y ∈ S} ≤ inf{f(x)+g(x) : x ∈ S} = mS(f+g)

Therefore, we can conclude

L(f, P ) + L(g, P ) =
∑
S∈P

mS(f) · V (S) +
∑
S∈P

mS(g) · V (S)

=
∑
S∈P

V (S) ·
(
mS(f) +mS(g)

)
≤

∑
S∈P

V (S) ·mS(f + g)

= L(f + g, P )
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A similar argument shows that A ⊂ B ⊂ R implies sup(A) ≤ sup(B).

Given any partition P of A and S ∈ P , we also have

MS(f) +MS(G) = sup{f(x) + g(y) : x, y ∈ S}

MS(f + g) = sup{f(x) + g(x) : x ∈ S}

Similarly, we have

{f(x) + g(x) : x ∈ S} ⊂ {f(x) + g(y) : x, y ∈ S}

and so we can conclude that

MS(f + g) ≤MS(f) +MS(g)

Therefore, we have

U(f + g, P ) =
∑
S∈P

MS(f + g) · V (S)

≤
∑
S∈P

(
MS(f) +MS(g)

)
· V (S)

=
∑
S∈P

MS(f) · V (S) +
∑
S∈P

MS(g) · V (S)

= U(f, P ) + U(g, P )

b) Given any ε > 0, we can find partitions Pf and Pg of A so that

U(f, Pf )− L(f, Pf ) <
ε

2
and U(g, Pg)− L(g, Pg) <

ε

2

Let P be a refinement of Pf and Pg. Then by part (a), we have

U(f + g, P )− L(f + g, P )

≤
(
U(f, P )− L(f, P )

)
+
(
U(g, P )− L(g, P )

)
<

ε

2
+
ε

2
= ε

and so f + g is integrable. This means that for any partition, P , we
have

L(f + g, P ) ≤
ˆ
A

(f + g) ≤ U(f + g, P )
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and combining with part (a) gives us

L(f, P ) + L(g, P ) ≤
ˆ
A

(f + g) ≤ U(f, P ) + U(g, P )

Since L(f, P ) +L(g, P ) and U(f, P ) +U(g, P ) can be made arbitrarily
close, it follows that

ˆ
A

(f + g) =

ˆ
A

f +

ˆ
A

g

c) Let c > 0. Let P be a partition of A so that

U(f, P )− L(f, P ) <
ε

c

Then given any S ∈ P , we have

mS(cf) = inf
x∈S
{cf(x)} = c inf

x∈s
{f(x)} = cmS(f)

MS(cf) = sup
x∈S
{cf(x)} = c sup

x∈S
{f(x)} = cMS(f)

Then we have

U(cf, P )− L(cf, P ) =
∑
S∈P

MS(cf) · V (S)−
∑
S∈P

mS(cf) · V (S)

=
∑
S∈P

c
(
MS(f)−mS(f)

)
· V (S)

= c
∑
S∈P

(
MS(f)−mS(f)

)
· V (S)

≤ c
ε

c
= ε

If c < 0, then we have similar inequalities

mS(cf) = cMS(f) and MS(cf) = cmS(f)

Thus choosing a partition P so that

U(f, P )− L(f, P ) < −ε
c

gives us (by a similar calculation) that

U(cf, P )− L(cf, P ) = −c
(
U(f, P )− L(f, P )

)
< −c · ε

−c
= ε
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If c = 0, then cf is a constant function, namely cf(x) = 0 and we have
proven in class that constant functions are integrable.

Therefore, cf is integrable. If c = 0, then c

ˆ
A

f = c inf
P
U(f, P ) =

ˆ
A

cf

which is all equal to 0. If c 6= 0, then notice that for any partition, P ,

cL(f, P ) and cU(f, P ) bound both c

ˆ
A

f and

ˆ
A

cf . Since the upper

and lower sums can be made arbitrarily close, we conclude that

ˆ
A

cf = c

ˆ
A

f
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2) Let f : A → R and let P be a partition of A. Show that f
is integrable if and only if for each subrectangle S the function
f |S, the restriction of f to S, is integrable, and that in this case,´
A
f =

∑
S∈P
´
S
f |S.

Proof: ( ⇐= ) Suppose each f |S is integrable. Then given ε > 0, there
exist partitions PS of S so that

U(f |S, PS)− L(f |S, PS) <
ε

N

where N is the number of subrectangles in P . Extend the edges of each
subrectangle of PS so that it is a partition of A, and let Q be the partition
which contains each PS. In particular, Q refines each PS so

U(f |S, Q)− L(f |S, Q) <
ε

N

Now for each R ∈ Q with R ⊂ S, we have that MR(f) = MR(f |S) and
mR(f) = mR(f |S). Then letting Si be the subrectangles of P , we have

U(f,Q)− L(f,Q) =
∑
R∈Q

V (R) ·
(
MR(f)−mR(f)

)
=

N∑
i=1

∑
R∈Q
R⊂Si

V (R) ·
(
MR(f)−mR(f)

)

=
N∑
i=1

∑
R∈Q
R⊂Si

V (R) ·
(
MR

(
f |S
)
−mS

(
f |S
))

<
N∑
i=1

ε

N

= ε

and so f is integrable.

( =⇒ ) Now suppose f is integrable. Then given any ε > 0, there exists some
partition Q which refines P and satisfies

U(f,Q)− L(f,Q) < ε

Let S ∈ P and let PS ⊂ Q be the set of subrectangles of Q which partitions
S. Note that f = f |S on S so their upper and lower sums are all equal as
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well. Then similar to the converse, we have

U(f,Q)− L(f,Q) =
N∑
i=1

∑
R∈PS

V (R) ·
(
MR

(
f |S
)
−mS

(
f |S
))
< ε

Since V (R) and MR

(
f |S
)
−mS

(
f |S
)

are both positive, their product is also
positive which means that

∑
R∈PS

V (R)·
(
MR

(
f |S
)
−mS

(
f |S
))
≤

N∑
i=1

∑
R∈PS

V (R)·
(
MR

(
f |S
)
−mS

(
f |S
))
< ε

which means f |S is integrable.

Note that if f |S is integrable, then the extension gS : A→ R defined by

g(x) =

{
f(x) if x ∈ S
0 if x /∈ S

is also integrable since given any partition of S, we can extend it to a partition
of A, and the subrectangles that do not cover S have equal upper and lower
sums, namely 0, and so their difference do not contribute anything to the
upper and lower sums of subrectangles covering S. In particular, this means´
S
f |S =

´
A
gS. Clearly, we have f =

∑
S∈P

gS and by problem 3-3 of Spivak,

we have ˆ
A

f =
∑
S∈P

ˆ
A

gS =
∑
S∈P

ˆ
S

f |S
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3) Let f, g : A → R be integrable and suppose f ≤ g. Show that´
A
f ≤
´
A
g.

Proof: First we show that if an integrable function h : A → R satisfies

h(x) ≥ 0 for all x ∈ A, then

ˆ
A

h ≥ 0. Let P be any partition of A and let

S ∈ P . Then note that 0 ≤ h(x), for all x ∈ S ⊂ A so mS(h) ≥ 0. This
means that L(h, P ) ≥ 0 and since h is integrable, we have

0 ≤ L(h, P ) ≤ sup
P
L(h, P ) =

ˆ
A

h

Now let h : A→ R be the function h(x) = g(x)− f(x). By problem 1 of this
problem set, h is integrable and

ˆ
A

h =

ˆ
A

g −
ˆ
A

f

Since g(x) ≥ f(x) for all x ∈ A, it follows that h(x) ≥ 0 and so

0 ≤
ˆ
A

g −
ˆ
A

f =⇒
ˆ
A

f ≤
ˆ
A

g



MAT257 Problem Set 7

4) If f : A → R is integrable, show that |f | is integrable and
|
´
A
f | ≤

´
A
|f |.

Proof: f is integrable so given any ε > 0, there exists some partition P
of A so that

U(f, P )− L(f, P ) < ε

Given any S ∈ P , we have three possibilities:

1) mS(f) ≤MS(f) ≤ 0

2) mS(f) ≤ 0 ≤MS(f)

3) 0 ≤ mS(f) ≤MS(f)

In case (1), we have mS

(
|f |
)

=
∣∣MS(f)

∣∣ and MS

(
|f |
)

=
∣∣mS(f)

∣∣, and so

MS

(
|f |
)
−mS

(
|f |
)

= MS(f)−mS(f)

In case (3), we have mS

(
|f |
)

= mS(f) and MS

(
|f |
)

= MS(f) and so

MS

(
|f |
)
−mS

(
|f |
)

= MS(f)−mS(f)

In case (2), we have MS

(
|f |
)

= MS(f) and 0 ≤ mS

(
|f |
)
≤
∣∣mS(f)

∣∣ and
combining and rearranging gives us

mS(f) ≤ −mS

(
|f |
)
≤ 0 ≤MS

(
|f |
)

= MS(f)

and so we get the inequality

MS

(
|f |
)
−mS

(
|f |
)
≤MS(f)−mS(f)

Thus we have

U
(
|f |, P

)
− L

(
|f |, P

)
=

∑
S∈P

V (S) ·
(
MS

(
|f |
)
−mS

(
|f |
))

≤
∑
S∈P

V (S) ·
(
MS(f)−mS(f)

)
< ε

and so |f | is integrable.

To show that
∣∣ ´

A
f
∣∣ ≤ ´

A
|f |, note that −|f | ≤ f ≤ |f | and by problem 3-5

of Spivak, we have

−
ˆ
A

|f | ≤
ˆ
A

f ≤
ˆ
A

|f | =⇒
∣∣∣∣ˆ

A

f

∣∣∣∣ ≤ ˆ
A

|f |



MAT257 Problem Set 7

5a) Show that an unbounded set cannot have content 0.

b) Give an example of a closed set of measure 0 which does not
have content 0.

Proof:

a) Suppose A ∈ Rn has content zero. Then given any ε > 0, there exist
finitely many open rectangles R1, . . . , Rk which cover A. Each Ri is
a rectangle and so is bounded by the ball B(0, ri) for some ri. Let
r = max{r1, . . . , ri}. Then

A ⊂
k⋃

i=1

Ri ⊂ B(0, r)

and so A is bounded.

b) Consider the subset of R2

A = {(x, 0) : x ∈ N} = {(0, 0), (1, 0), (2, 0), . . . }

Define sets

Bi = (i, i+ 1)× R for i ∈ N
C− = {(x, y) ∈ R2 : y < 0}
C+ = {(x, y) ∈ R2 : y > 0}
D = {(x, y) ∈ R2 : x < 0}

Then each of these sets are open and their union

X =

(
∞⋃
i=0

Bi

)
∪ C− ∪ C+ ∪D

is also open. Since A = R2 − X, we have that A is indeed closed.
Since A is also countable, we have that it is measure zero. Since it is
unbounded, it does not have content zero.
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6) Let A =
⋃∞

i=1(ai, bi) be a countable union of open intervals, and
assume that

(
[0, 1] ∩Q

)
⊂ A. Show that if

∑∞
i=1(bi − ai) < 1 then the

boundary of A is not of measure 0.

Proof: Without loss of generality, we may assume that A ⊂ [0, 1]. This
is because if A′ is some set which contains A, restricting to A′ ∩ [0, 1] and
taking the boundary gives us

bd(A) = bd
(
A′ ∩ [0, 1]

)
⊂ bd(A′) ∪ {0, 1}

and so if bd(A) does not have measure 0, neither will bd(A′).

Additionally, we may assume that {0, 1} /∈ A as removing two points
would only change the boundary by finitely many points, which does not
affect whether the set is measure zero or not. More precisely, if A′ = A −
{0, 1}, then problem 1-18 of Spivak

bd(A′) = [0, 1]− A′ = [0, 1]−
(
A− {0, 1}

)
=
(
[0, 1]− A

)
∪ {0, 1}

So by problem 1-18 of Spivak, we have that bd(A) = [0, 1] − A. Since
A ⊂ [0, 1], it follows that

bd(A) ∪ A =
(
[0, 1]− A

)
∪ A = [0, 1]

Suppose S :=
∞∑
i=1

(bi − ai) = 1− ε, and suppose bd(A) has measure zero.

Then since A =
∞⋃
i=1

(ai, bi), it follows that A is covered by all the (ai, bi),

and so A has a ”length” of at most 1− ε. Then since bd(A) is measure zero,

it can be covered with open intervals whose sum is less than
ε

2
, which means

the ”length” of bd(A) is less than
ε

2
. Since the length of [0, 1] is 1, it follows

that
1 ≤ S +

ε

2
= (1− ε) +

ε

2
= 1− ε

2
< 1

which is a contradiction.



MAT257 Problem Set 7

7) Let f : [a, b]→ R be an increasing function. Show that the set of
discontinuities of f is of measure 0.

Spivak Problem 1-30: Given any increasing f : [a, b]→ R and given distinct
x1, . . . , xn ∈ [a, b], we have

n∑
i=1

o(f, xi) < f(b)− f(a)

Proof: By the definition of the oscillation, we have

o(f, xi) = lim
r→0+

o
(
f, (xi−r, xi+r)

)
= lim

r→0+

(
sup

x∈(xi−r,xi+r)

f(x)− inf
x∈(xi−r,xi+r)

f(x)

)
Since f is increasing, we have

o(f, xi) = lim
r→0+

(
f(xi + r)− f(xi − r)

)
Assume x1 < · · · < xn and choose r > 0 small enough so that none of
any f(xi + r) or f(xj − r) are equal, for any i and j. Then there exist
midpoints between each consecutive pair of f(xi)’s, say xi < xmi

< xi+1 for
1 ≤ i ≤ n − 1. Since f is increasing, we have for 2 ≤ i ≤ n − 1, that
f(xi + r) < f(xmi

) and f(xi− r) > f(xmi−1
), and that f(xn− r) > f(xmn−1)

and f(x1 + r) < f(xm1), so we get a telescoping sum

n∑
i=1

(
f(xi + r)− f(xi − r)

)
< f(xn + r) +

(
n−1∑
i=2

(
− f(xmi

) + f(xm1)
))
− f(x1 − r)

= f(xn + r)− f(x1 − r)
≤ f(b)− f(a)

This proves problem 1-30.

Problem Proof: Now given n ∈ N, consider the set

Dn =

{
x ∈ [a, b] : o(f, x) >

1

n

}
Then the set, D, of discontinuities of f is the union of all Dn. Suppose Dn

is infinite. Pick distinct x1, . . . , xm ∈ Dn where

n
(
f(b)− f(a)

)
< m =⇒ m

n
> f(b)− f(a)
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Then by Spivak’s Problem 1-30, we have

m∑
i=1

o(f, xi) >
m∑
i=1

1

n
=
m

n
> f(b)− f(a)

which contradicts the same problem in Spivak. Thus Dn is necessarily finite.
Since D is a countable union of finite sets, D itself is countable and so is of
measure zero.


