1) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a C^{1} function; we write f in the form $f\left(x, y_{1}, y_{2}\right)$. Assume that $f(3,-1,2)=0$ and

$$
f^{\prime}(3,-1,2)=\left(\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & 1
\end{array}\right)
$$

a) Show that there is a function $g: B \rightarrow \mathbb{R}^{2}$ defined on an open set B in \mathbb{R} such that $e \in B$ and such that $g(3)=(-1,2)$ and

$$
f\left(x, g_{1}(x), g_{2}(x)\right)=0
$$

for $x \in B$.
b) Find $g^{\prime}(3)$.
c) Discuss the problem of solving the equation $f\left(x, y_{1}, y_{2}\right)=0$ for an arbitrary pair of the unknowns in terms of the third, near the point $(3,-1,2)$.

Solution:
a) f is C^{1} so it is C^{1} in some neighbourhood around $(3,-1,2)$. If we denote $\frac{\partial f}{\partial y}$ to be the matrix

$$
\frac{\partial f}{\partial y}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right)
$$

then we have that $\frac{\partial f}{\partial y}$ is invertible near $(3,-1,2)$ since det $\frac{\partial f}{\partial y}=3 \neq 0$. Since $f(3,-1,2)=0$, we have by the implicit function theorem that there exists an open $B \subset \mathbb{R}$ with $3 \in B$, and there exists an open $A \subset \mathbb{R}^{2}$ with $(-1,2) \in A$ such that there is some unique function $\bar{g}: B \rightarrow A$ with the properties

$$
\bar{g}(3)=(-1,2) \quad \text { and } \quad \forall x \in B, f(x, \bar{g}(x))=f\left(x, \overline{g_{1}}(x), \overline{g_{2}}(x)\right)=0
$$

Let $g: B \rightarrow \mathbb{R}^{2}$ be the function $g=\bar{g}$. Then this function solves the problem.
b) Let $H: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the function

$$
H\left(x, y_{1}, y_{2}\right)=\left(x, f\left(x, y_{1}, y_{2}\right)\right)
$$

and let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the function

$$
\pi\left(x, y_{1}, y_{2}\right)=\left(y_{1}, y_{2}\right)
$$

Then g from part (a) is

$$
g(x)=\pi \circ H^{-1}(x, 0,0)
$$

by the implicit function theorem. Note that by the inverse function theorem, we have

$$
\begin{aligned}
D H^{-1}(3,0,0) & =\left[H^{\prime}\left(H^{-1}(3,0,0)\right)\right]^{-1} \\
& =\left[H^{\prime}(3,-1,2)\right]^{-1} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 2 & 1 \\
1 & -1 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 3 & -1 / 3 \\
-1 & 1 / 3 & 2 / 3
\end{array}\right)
\end{aligned}
$$

Thus by the chain rule, we have

$$
g^{\prime}(3)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 3 & -1 / 3 \\
-1 & 1 / 3 & 2 / 3
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{0}{0}
$$

EDIT: The final result is actually supposed to be $\binom{0}{-1}$ rather than $\binom{0}{0}$. Everything else is fine.
c) The other potential candidates would be to solve for $\left(x, y_{1}\right)$ in terms of y_{2} or to solve for $\left(x, y_{2}\right)$ in terms of y_{1}. The first case is very similar to part (a) since

$$
\frac{\partial f}{\partial\left(x, y_{1}\right)}=\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right)
$$

is the same as $\frac{\partial f}{\partial y}$ but with two columns swapped. Since swapping the columns only changes the determinant possibly by a sign, it is still invertible and so we can still apply the implicit function theorem. In the second case however, we have

$$
\frac{\partial f}{\partial\left(x, y_{2}\right)}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

which is not invertible and so we cannot apply the implicit function theorem.
2) Let $f: R^{2} \rightarrow \mathbb{R}$ be C^{1}, with $f(2,-1)=-1$. Set

$$
\begin{aligned}
& G(x, y, u)=f(x, y)+u^{2} \\
& H(x, y, u)=u x+3 y^{3}+u^{3} .
\end{aligned}
$$

The equations $G(x, y, u)=0$ and $H(x, y, u)=0$ have the solution $(x, y, u)=(2,-1,1)$.
a) What conditions on f^{\prime} ensure that there are C^{1} functions $x=$ $g(y)$ and $u=h(y)$ defined on an open set in \mathbb{R} that satisfy both equations, and such that $g(-1)=2$ and $h(-1)=1$?
b) Under the conditions of (a) and assuming that $f^{\prime}(2,-1)=(1 \quad-3)$, find $g^{\prime}(-1)$ and $h^{\prime}(-1)$.

Solution:
a) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the function

$$
F(x, y, u)=\binom{G(x, y, u)}{H(x, y, u)}=\binom{f(x, y)+u^{2}}{u x+3 y^{3}+u^{3}}
$$

Then $F(2,-1,1)=0$. We can find the differential of F to get

$$
\begin{aligned}
F^{\prime}(x, y, u) & =\left(\begin{array}{ccc}
\partial_{1} G(x, y, u) & \partial_{2} G(x, y, u) & \partial_{3} G(2, y, u) \\
\partial_{1} H(x, y, u) & \partial_{2} H(x, y, u) & \partial_{3} H(x, y, u)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\partial_{1} f(x, y) & \partial_{2} f(x, y) & 2 u \\
u & 9 y^{2} & x+3 u^{2}
\end{array}\right)
\end{aligned}
$$

and so $F^{\prime}(2,-1,1)=\left(\begin{array}{ccc}\partial_{1} f(2,-1) & \partial_{2} f(2,-1) & 2 \\ 1 & 9 & 5\end{array}\right)$. If we want to apply the implicit function theorem near $(2,-1,1)$ to solve (x, u) in terms of y, we need the matrix

$$
M=\frac{\partial F}{\partial(x, u)}=\left(\begin{array}{cc}
\partial_{1} f(2,-1) & 2 \\
1 & 5
\end{array}\right)
$$

to be invertible, that is, $\partial_{1} f(2,-1) \neq \frac{2}{5}$. If this were the case, then applying the implicit function theorem would give us some $\phi: A \rightarrow B$ for open $-1 \in A \subset \mathbb{R}$ and $(2,1) \in B \subset \mathbb{R}^{2}$ such that $\phi(-1)=(2,1)$. Let $g=\phi_{1}$ and $h=\phi_{2}$.
b) Let $\Gamma: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by

$$
\Gamma(x, y, u)=(G(x, y, u), y, H(x, y, u))
$$

and $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by

$$
\pi(x, y, u)=(x, u)
$$

By the implicit function theorem, we have that ϕ from (a) is given by

$$
\phi(y)=\pi\left(\Gamma^{-1}(0, y, 0)\right)
$$

By the inverse function theorem, we have that

$$
\begin{aligned}
\left(\Gamma^{-1}\right)^{\prime}(0,-1,0) & =\left[\Gamma^{\prime}\left(\Gamma^{-1}(0,-1,0)\right)\right]^{-1} \\
& =\left[\Gamma^{\prime}(2,-1,1)\right]^{-1} \\
& =\left(\begin{array}{ccc}
1 & -3 & 2 \\
0 & 1 & 0 \\
1 & 9 & 5
\end{array}\right) \\
& =\left(\begin{array}{ccc}
5 & 11 & -\frac{2}{3} \\
0 & 1 & 0 \\
-\frac{1}{3} & -4 & \frac{1}{3}
\end{array}\right)
\end{aligned}
$$

So by the chain rule, we have

$$
\begin{aligned}
\phi^{\prime}(-1)=\binom{g^{\prime}(-1)}{h^{\prime}(-1)} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\Gamma^{-1}\right)^{\prime}(0,-1,0) \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& =\binom{11}{-4}
\end{aligned}
$$

Thus $g^{\prime}(-1)=11$ and $h^{\prime}(-1)=-4$.
3) Let $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be C^{1} functions. "In general", one expects that each of the equations $f(x, y, z)=0$ and $g(x, y, z)=0$ represents a "nice" surface in \mathbb{R}^{3} and that their intersections is a smooth curve. Show that if $\left(x_{0}, y_{0}, z_{0}\right)$ satisfies both of these equations, and if $\partial(f, g) / \partial(x, y, z)$ has rank 2 at $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, then near p_{0} one can solve these equations for two of x, y, z in terms of the third, thus representing the solution set locally as a parametrized curve.
Note: There is only one reasonable way to interpret the notation $\partial(f, g) / \partial(x, y, z)$.

Solution: Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the function defined by

$$
F\left(x_{1}, x_{2}, x_{3}\right)=\left(f\left(x_{1}, x_{2}, x_{3}\right), g\left(x_{1}, x_{2}, x_{3}\right)\right)
$$

Then $\frac{\partial(f, g)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}$ is the differential of F, that is
$\frac{\partial(f, g)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}=F^{\prime}\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{ccc}\partial_{1} f\left(x_{1}, x_{2}, x_{3}\right) & \partial_{2} f\left(x_{1}, x_{2}, x_{3}\right) & \partial_{3} f\left(x_{1}, x_{2}, x_{3}\right) \\ \partial_{1} g\left(x_{1}, x_{2}, x_{3}\right) & \partial_{2} g\left(x_{1}, x_{2}, x_{3}\right) & \partial_{3} g\left(x_{1}, x_{2}, x_{3}\right)\end{array}\right)$
To simplify notation, let $\partial_{i} f\left(x_{1}, x_{2}, x_{3}\right)=\phi_{i}$ and $\partial_{i} g\left(x_{1}, x_{2}, x_{3}\right)=\gamma_{i}$. Let $p_{0}=\left(x_{1}, x_{2}, x_{3}\right)$ be so that $F\left(p_{0}\right)=0$ and that $F^{\prime}\left(p_{0}\right)$ has rank 2 . This means that we can row reduce $F^{\prime}\left(x_{1}, x_{2}, x_{3}\right)$ and swap the columns to get a matrix of the form

$$
\left(\begin{array}{lll}
1 & 0 & \phi \\
0 & 1 & \gamma
\end{array}\right)
$$

for some $\phi, \gamma \in \mathbb{R}$. Note that we can remove ϕ and γ from the matrix to have the identity which is invertible, and so we could remove the corresponding column from $F^{\prime}\left(x_{1}, x_{2}, x_{3}\right)$ to get an invertible matrix

$$
\left(\begin{array}{ll}
\phi_{j} & \phi_{k} \\
\gamma_{j} & \gamma_{k}
\end{array}\right)
$$

for some $j, k \in\{1,2,3\}$ since row operations preserves invertibility. From here, we can apply the implicit function theorem to get a function $G: A \rightarrow \mathbb{R}^{2}$ for some open $x_{i} \in A \subset \mathbb{R}$ where $i \neq j, k$, such that

$$
G\left(x_{i}\right)=\left(x_{j}, x_{k}\right)
$$

Thus we can solve f and g near p_{0} for x_{j} and x_{k} in terms of x_{i}.
4) Let $f: \mathbb{R}^{k+n} \rightarrow \mathbb{R}^{n}$ be a C^{1} funciton; suppose that $f(a)=0$ and that $f^{\prime}(a)$ has rank n. Show that if c is a point of \mathbb{R}^{n} sufficiently close to 0 , then the equation $f(x)=c$ has a solution.

Solution: Since $f^{\prime}(a)$ has rank n, this means that we can rearrange the columns of $f^{\prime}(a)$ to get something of the form

$$
f^{\prime}(a)=\left(\partial_{x} f(a) \quad \partial_{y} f(a)\right)
$$

such that $\partial_{y} f(a)$ is invertible and has rank n. Since column permutations does not change the determinant, except possibly by a sign, we can assume without loss of generality that f is of the form $f(x, y)$, where $x \in \mathbb{R}^{k}$ and $y \in \mathbb{R}^{n}$. Thus let $a=\left(a_{x}, a_{y}\right)$ and so we have $f\left(a_{x}, a_{y}\right)=0$ and $\partial_{y} f\left(a_{x}, a_{y}\right)$ is invertible.

Define a function $g: \mathbb{R}^{n+n} \rightarrow \mathbb{R}^{n}$ by

$$
g(c, y)=f\left(a_{x}, y\right)-c
$$

Note that $g\left(0, a_{y}\right)=f\left(a_{x}, a_{y}\right)-0=0$ and

$$
\frac{\partial g}{\partial y}\left(0, a_{y}\right)=\partial_{y} f\left(a_{x}, a_{y}\right)
$$

which is invertible. Thus by the implicit function theorem, there exist open $A, B \subset \mathbb{R}^{n}$ with $0 \in A$ and $a_{y} \in B$, and a unique function $h: A \rightarrow B$ such that $h(0)=a_{y}$ and for all $c \in A$, we have $g(c, h(c))=0$. Expanding this out gives us

$$
0=g(c, h(c))=f\left(a_{x}, h(c)\right)-c \Longrightarrow f\left(a_{x}, h(c)\right)=c
$$

So for c sufficiently close to 0 , that is, for $c \in A$, we have that the point $(x, y)=\left(a_{x}, h(c)\right)$ satisfies $f(x, y)=c$.

