
MAT257 Problem Set 6

1) Let f : R3 → R2 be a C1 function; we write f in the form f(x, y1, y2).
Assume that f(3,−1, 2) = 0 and

f ′(3,−1, 2) =

(
1 2 1
1 −1 1

)
a) Show that there is a function g : B → R2 defined on an open

set B in R such that e ∈ B and such that g(3) = (−1, 2) and

f(x, g1(x), g2(x)) = 0

for x ∈ B.

b) Find g′(3).

c) Discuss the problem of solving the equation f(x, y1, y2) = 0 for
an arbitrary pair of the unknowns in terms of the third, near
the point (3,−1, 2).

Solution:

a) f is C1 so it is C1 in some neighbourhood around (3,−1, 2). If we

denote
∂f

∂y
to be the matrix

∂f

∂y
=

(
2 1
−1 1

)

then we have that
∂f

∂y
is invertible near (3,−1, 2) since det

∂f

∂y
= 3 6= 0.

Since f(3,−1, 2) = 0, we have by the implicit function theorem that
there exists an open B ⊂ R with 3 ∈ B, and there exists an open
A ⊂ R2 with (−1, 2) ∈ A such that there is some unique function
g : B → A with the properties

g(3) = (−1, 2) and ∀x ∈ B, f
(
x, g(x)

)
= f

(
x, g1(x), g2(x)

)
= 0

Let g : B → R2 be the function g = g. Then this function solves the
problem.

b) Let H : R3 → R3 be the function

H(x, y1, y2) =
(
x, f(x, y1, y2)

)
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and let π : R3 → R2 be the function

π(x, y1, y2) = (y1, y2)

Then g from part (a) is

g(x) = π ◦H−1(x, 0, 0)

by the implicit function theorem. Note that by the inverse function
theorem, we have

DH−1(3, 0, 0) =
[
H ′
(
H−1(3, 0, 0)

)]−1
=

[
H ′(3,−1, 2)

]−1
=

1 0 0
1 2 1
1 −1 1

−1

=

 1 0 0
0 1/3 −1/3
−1 1/3 2/3


Thus by the chain rule, we have

g′(3) =

(
0 1 0
0 0 1

)
·

 1 0 0
0 1/3 −1/3
−1 1/3 2/3

 ·
1

0
0

 =

(
0
0

)

EDIT: The final result is actually supposed to be

(
0
−1

)
rather than(

0
0

)
. Everything else is fine.

c) The other potential candidates would be to solve for (x, y1) in terms of
y2 or to solve for (x, y2) in terms of y1. The first case is very similar to
part (a) since

∂f

∂(x, y1)
=

(
1 2
1 −1

)
is the same as

∂f

∂y
but with two columns swapped. Since swapping

the columns only changes the determinant possibly by a sign, it is still
invertible and so we can still apply the implicit function theorem. In
the second case however, we have

∂f

∂(x, y2)
=

(
1 1
1 1

)
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which is not invertible and so we cannot apply the implicit function
theorem.
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2) Let f : R2 → R be C1, with f(2,−1) = −1. Set

G(x, y, u) = f(x, y) + u2,

H(x, y, u) = ux+ 3y3 + u3.

The equations G(x, y, u) = 0 and H(x, y, u) = 0 have the solution
(x, y, u) = (2,−1, 1).

a) What conditions on f ′ ensure that there are C1 functions x =
g(y) and u = h(y) defined on an open set in R that satisfy both
equations, and such that g(−1) = 2 and h(−1) = 1?

b) Under the conditions of (a) and assuming that
f ′(2,−1) = (1 − 3), find g′(−1) and h′(−1).

Solution:

a) Let F : R3 → R2 be the function

F (x, y, u) =

(
G(x, y, u)
H(x, y, u)

)
=

(
f(x, y) + u2

ux+ 3y3 + u3

)
Then F (2,−1, 1) = 0. We can find the differential of F to get

F ′(x, y, u) =

(
∂1G(x, y, u) ∂2G(x, y, u) ∂3G(2, y, u)
∂1H(x, y, u) ∂2H(x, y, u) ∂3H(x, y, u)

)
=

(
∂1f(x, y) ∂2f(x, y) 2u

u 9y2 x+ 3u2

)

and so F ′(2,−1, 1) =

(
∂1f(2,−1) ∂2f(2,−1) 2

1 9 5

)
. If we want to ap-

ply the implicit function theorem near (2,−1, 1) to solve (x, u) in terms
of y, we need the matrix

M =
∂F

∂(x, u)
=

(
∂1f(2,−1) 2

1 5

)

to be invertible, that is, ∂1f(2,−1) 6= 2

5
. If this were the case, then

applying the implicit function theorem would give us some φ : A→ B
for open −1 ∈ A ⊂ R and (2, 1) ∈ B ⊂ R2 such that φ(−1) = (2, 1).
Let g = φ1 and h = φ2.
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b) Let Γ : R3 → R3 be given by

Γ(x, y, u) =
(
G(x, y, u), y,H(x, y, u)

)
and π : R3 → R2 be given by

π(x, y, u) = (x, u)

By the implicit function theorem, we have that φ from (a) is given by

φ(y) = π
(
Γ−1(0, y, 0)

)
By the inverse function theorem, we have that

(Γ−1)′(0,−1, 0) =
[
Γ′
(
Γ−1(0,−1, 0)

)]−1
=

[
Γ′(2,−1, 1)

]−1
=

1 −3 2
0 1 0
1 9 5

−1

=


5

3
11 −2

3
0 1 0

−1

3
−4

1

3


So by the chain rule, we have

φ′(−1) =

(
g′(−1)
h′(−1)

)
=

(
1 0 0
0 0 1

)
· (Γ−1)′(0,−1, 0) ·

0
1
0


=

(
11
−4

)
Thus g′(−1) = 11 and h′(−1) = −4.
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3) Let f, g : R3 → R be C1 functions. ”In general”, one expects
that each of the equations f(x, y, z) = 0 and g(x, y, z) = 0 represents
a ”nice” surface in R3 and that their intersections is a smooth
curve. Show that if (x0, y0, z0) satisfies both of these equations, and
if ∂(f, g)/∂(x, y, z) has rank 2 at p0 = (x0, y0, z0), then near p0 one can
solve these equations for two of x, y, z in terms of the third, thus
representing the solution set locally as a parametrized curve.
Note: There is only one reasonable way to interpret the notation
∂(f, g)/∂(x, y, z).

Solution: Let F : R3 → R2 be the function defined by

F (x1, x2, x3) =
(
f(x1, x2, x3), g(x1, x2, x3)

)
Then

∂(f, g)

∂(x1, x2, x3)
is the differential of F , that is

∂(f, g)

∂(x1, x2, x3)
= F ′(x1, x2, x3) =

(
∂1f(x1, x2, x3) ∂2f(x1, x2, x3) ∂3f(x1, x2, x3)
∂1g(x1, x2, x3) ∂2g(x1, x2, x3) ∂3g(x1, x2, x3)

)
To simplify notation, let ∂if(x1, x2, x3) = φi and ∂ig(x1, x2, x3) = γi. Let
p0 = (x1, x2, x3) be so that F (p0) = 0 and that F ′(p0) has rank 2. This
means that we can row reduce F ′(x1, x2, x3) and swap the columns to get a
matrix of the form (

1 0 φ
0 1 γ

)
for some φ, γ ∈ R. Note that we can remove φ and γ from the matrix to have
the identity which is invertible, and so we could remove the corresponding
column from F ′(x1, x2, x3) to get an invertible matrix(

φj φk

γj γk

)
for some j, k ∈ {1, 2, 3} since row operations preserves invertibility. From
here, we can apply the implicit function theorem to get a functionG : A→ R2

for some open xi ∈ A ⊂ R where i 6= j, k, such that

G(xi) = (xj, xk)

Thus we can solve f and g near p0 for xj and xk in terms of xi.
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4) Let f : Rk+n → Rn be a C1 funciton; suppose that f(a) = 0 and
that f ′(a) has rank n. Show that if c is a point of Rn sufficiently
close to 0, then the equation f(x) = c has a solution.

Solution: Since f ′(a) has rank n, this means that we can rearrange the
columns of f ′(a) to get something of the form

f ′(a) =
(
∂xf(a) ∂yf(a)

)
such that ∂yf(a) is invertible and has rank n. Since column permutations
does not change the determinant, except possibly by a sign, we can assume
without loss of generality that f is of the form f(x, y), where x ∈ Rk and
y ∈ Rn. Thus let a = (ax, ay) and so we have f(ax, ay) = 0 and ∂yf(ax, ay)
is invertible.

Define a function g : Rn+n → Rn by

g(c, y) = f(ax, y)− c

Note that g(0, ay) = f(ax, ay)− 0 = 0 and

∂g

∂y
(0, ay) = ∂yf(ax, ay)

which is invertible. Thus by the implicit function theorem, there exist open
A,B ⊂ Rn with 0 ∈ A and ay ∈ B, and a unique function h : A → B such
that h(0) = ay and for all c ∈ A, we have g

(
c, h(c)

)
= 0. Expanding this out

gives us

0 = g
(
c, h(c)

)
= f

(
ax, h(c)

)
− c =⇒ f

(
ax, h(c)

)
= c

So for c sufficiently close to 0, that is, for c ∈ A, we have that the point
(x, y) =

(
ax, h(c)

)
satisfies f(x, y) = c.


