1) Let $A \subset \mathbb{R}^{n}$ be an open set and $f: A \rightarrow \mathbb{R}^{n}$ a continuously differentiable 1-1 function such that $f^{\prime}(x)$ is invertible for all $x \in A$. Show that $f(A)$ is an open set and that $f^{-1}: f(A) \rightarrow A$ is differentiable. Show also that $f(B)$ is open for any open set $B \subset A$.

Proof: First we show that $f(A)$ is open. Let $y \in f(A)$. Then by definition there exists some $x \in A$ such that $y=f(x)$. Since $f^{\prime}(x)$ is invertible, the inverse function theorem says that there exist open sets $V, W \in \mathbb{R}^{n}$ where $x \in V \subset A$ and $y=f(x) \in W$ such that $f: V \rightarrow W$ is invertible. Since $W=f(V)$ and $V \subset A$, we have $y \in W \subset f(A)$ and so $f(A)$ is open.

Now we show that $f^{-1}: f(A) \rightarrow A$ is differentiable. First note that f^{-1} exists and is well-defined since f is injective and we have restricted the codomain to the range of f. Now given any $x \in A$, we have that $f^{\prime}(x)$ is invertible and so the inverse function theorem says that there exists open sets $V_{x}, W_{y} \in \mathbb{R}^{n}$ where $x \in V_{x} \subset A$ and $y=f(x) \in W_{y} \subset f(A)$ such that $f_{x}: V \rightarrow W$ has a continuously differentiable inverse $f_{x}^{-1}: W_{y} \rightarrow V_{x}$. Note that each f_{x}^{-1} must agree with f^{-1} since f is injective. In particular, $f_{x_{1}}^{-1}$ must agree with $f_{x_{2}}^{-1}$ on $W_{y_{1}} \cap W_{y_{2}}$ because f is injective. Since the functions agree, we have that

$$
\left(f_{x_{1}}^{-1}\right)^{\prime}(y)=\left(f_{x_{2}}^{-1}\right)^{\prime}(y)
$$

for any $x_{1}, x_{2} \in A$ and any $y \in W_{x_{1}} \cap W_{x_{2}}$. Since $\bigcup_{x \in A} V_{x}=A$ and
$\bigcup_{y \in f(A)} W_{y}=f(A)$, we have that $\left(f^{-1}\right)^{\prime}(y)$ given by

$$
\left(f^{-1}\right)^{\prime}(y):=\left(f_{x_{0}}^{-1}\right)^{\prime}(y)
$$

for some $x_{0} \in A$ is well-defined which means f^{-1} is differentiable.
Now we will show that

$$
B \subset A \text { open } \Longrightarrow f(B) \subset f(A) \text { open }
$$

Consider the restriction of f to some open B

$$
f_{B}: B \rightarrow f(B), \quad f_{B}(x)=f(x)
$$

Then f_{B} is continuously differentiable and injective since f is, and $f_{B}^{\prime}(x)$ is invertible since $f^{\prime}(x)$ is. Thus applying the first part of this problem says that $f(B)$ is open.

2a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuously differentiable function. Show that f is not $1-1$.
b) Generalize this result to the case of a continuously differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where $n>m$.

Proof:

a) Suppose for the sake of a contradiction that f is injective. Then one of $D_{1} f(x, y) \neq 0$ or $D_{2} f(x, y) \neq 0$ is true as otherwise f would be constant which is not injective. Without loss of generality, suppose $D_{1} f(a, b) \neq 0$ for some (a, b) in some open set A. Define a function $g: A \rightarrow \mathbb{R}^{2}$ by

$$
g(x, y)=(f(x, y), \pi(x, y))=(f(x, y), y)
$$

Since g is a composition of continuously differentiable functions, g itself is continuously differentiable with differential

$$
g^{\prime}(x, y)=\left(\begin{array}{cc}
D_{1} f(x, y) & D_{2} f(x, y) \\
0 & 1
\end{array}\right)
$$

and so $\operatorname{det} g^{\prime}(x, y)=D_{1} f(x, y) \neq 0$, for all $(x, y) \in A$. By Spivak problem 2-36, we have that $g(A)$ is open. Thus we can find some $r \in \mathbb{R}$ such that $g(a, b) \in B((a, b), r) \subset g(A)$. Note additionally that for any $(u, v) \in g(A)$, we have that there exists some $(x, y) \in A$ such that

$$
(u, v)=g(x, y)=(f(x, y), y)
$$

However, the point $\left(f(a, b), b+\frac{r}{2}\right)$ is in $B((a, b), r)$ but is not contained in $g(A)$, which is a contradiction.
b) Let $n=m+k$. Denote a point of \mathbb{R}^{n} by

$$
z=(x, y)=\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{k}\right)
$$

Now given $f: \mathbb{R}^{m+k} \rightarrow \mathbb{R}^{m}$ continuously differentiable where $f=\left(\begin{array}{c}f_{1} \\ \vdots \\ f_{m}\end{array}\right)$,
define four matrices

$$
\begin{aligned}
D_{1, m} f(z) & :=\left(\begin{array}{ccc}
D_{1} f_{1}(z) & \ldots & D_{m} f_{1}(z) \\
\vdots & \ddots & \vdots \\
D_{1} f_{m}(z) & \ldots & D_{m} f_{m}(z)
\end{array}\right) \\
D_{m, n} f(z) & :=\left(\begin{array}{ccc}
D_{m+1} f_{1}(z) & \ldots & D_{m+k} f_{1}(z) \\
\vdots & \ddots & \vdots \\
D_{m+1} f_{m}(z) & \ldots & D_{m+k} f_{m}(z)
\end{array}\right) \\
\overline{0} & :=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right) \in M_{k, m}(\mathbb{R}) \\
I & :=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right) \in M_{k, k}(\mathbb{R})
\end{aligned}
$$

For the sake of a contradiction, suppose f is injective. Then $D f(z) \neq 0$ as otherwise, f is constant and not injective. Then for some $D_{i} f_{j}(z)$, we have that it is nonzero. Without loss of generality, suppose

$$
D_{1} f_{1}\left(z_{0}\right) \neq 0
$$

in some open set $A \in \mathbb{R}^{m+k}$. Now define another function $\pi: \mathbb{R}^{m+k} \rightarrow$ \mathbb{R}^{k} by

$$
\pi(x, y)=y=\left(y_{1}, \ldots, y_{k}\right)
$$

and define $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
g(x, y)=\left(f_{1}(x, y), \ldots, f_{m}(x, y), y_{1}, \ldots, y_{k}\right)=(f(x, y), \pi(x, y))
$$

Then g is a composition of continuously differentiable functions and so is itself continuously differentiable. Thus by the chain rule we get

$$
D g(z)=\left(\begin{array}{cc}
D_{1, m} f(z) & D_{m, n} f(z) \\
\overline{0} & I
\end{array}\right)
$$

and so $\operatorname{det} D g(z)=\operatorname{det}\left(D_{1, m} f(z)\right) \operatorname{det}(I)=\operatorname{det} D_{1, m} f(z)$. This value is necessarily nonzero as otherwise f would not be injective. Thus by Spivak problem 2-36, $g(A)$ is open. Similarly to the part (a) of this question, every point of $g(A)$ is of the form

$$
g(x, y)=(f(x, y), y)
$$

and there exists an open ball B of radius ϵ such that $g(x, y) \in B \subset$ $g(A)$. Then taking the point $z^{\prime}=g\left(x, y+\frac{1}{\epsilon} e_{n}\right)$ gives us $z^{\prime} \in B$ but $z^{\prime} \notin g(A)$ which is a contradiction.

3a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f^{\prime}(a) \neq 0$ for all $a \in \mathbb{R}$, show that f is $1-1$ on \mathbb{R}.
b) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$. Show that $f^{\prime}(x, y)$ is always invertible yet f is not $1-1$.

Proof:

a) We will prove the contrapositive. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function that is not injective. Then there exists $x, y \in \mathbb{R}$ such that

$$
x \neq y \quad \text { and } \quad f(x)=f(y)
$$

Without loss of generality, assume $x<y$. Since f is continuous and differentiable on \mathbb{R}, it is in particular continuous on $[x, y]$ and differentiable on (x, y), and so there exists some $a \in(x, y)$ such that

$$
f(y)-f(x)=f^{\prime}(a) \cdot(y-x)
$$

The left hand side equals to 0 but $y-x \neq 0$ and so we conclude that $f^{\prime}(a)$ must necessarily be 0 .
b) Note that calculating the partials of f gives us the differential

$$
f^{\prime}(x, y)=\left(\begin{array}{cc}
e^{x} \cos y & -e^{x} \sin y \\
e^{x} \sin y & e^{x} \cos y
\end{array}\right)
$$

Then the determinant of $f^{\prime}(x, y)$ is given by
det $f^{\prime}(x, y)=\left(e^{x} \cos y\right)^{2}+\left(e^{x} \sin y\right)^{2}=\left(e^{x}\right)^{2}\left(\cos ^{2} y+\sin ^{2} y\right)=e^{2 x}>0$
In particular, we have that $\operatorname{det} f^{\prime}(x, y)$ is never zero and so is always invertible. However, consider the points $(0,0)$ and $(0,2 \pi)$. Then

$$
f(0,0)=f(0,2 \pi)=(1,0)
$$

but clearly

$$
(0,0) \neq(0,2 \pi)
$$

Thus f is not $1-1$.

