MAT257 Assignment 3 Solution

1. Proof. Suppose f is differentiable at $a \in \mathbb{R}^{n}$. Then there exists a linear map $\lambda: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that
$\lim _{h \rightarrow 0} \frac{|f(a+h)-f(a)-\lambda(h)|}{|h|}=0$. By the limit law about products of limits, we have:

$$
\lim _{h \rightarrow 0}|f(a+h)-f(a)-\lambda(h)|=\lim _{h \rightarrow 0} \frac{|f(a+h)-f(a)-\lambda(h)|}{|h|} \cdot|h|=\lim _{h \rightarrow 0} \frac{|f(a+h)-f(a)-\lambda(h)|}{|h|} \cdot \lim _{h \rightarrow 0}|h|=0 \cdot 0=0
$$

Consider $|f(a+h)-f(a)|$. By the triangle inequality, we have:

$$
|f(a+h)-f(a)|=|f(a+h)-f(a)-\lambda(h)+\lambda(h)| \leq|f(a+h)-f(a)-\lambda(h)|+|\lambda(h)|
$$

Since λ is linear, λ is continuous. So in particular, $\lim _{h \rightarrow 0} \lambda(h)=\lambda(0)=0$.

Because $\lim _{h \rightarrow 0}|f(a+h)-f(a)-\lambda(h)|=0$, it follows that

$$
\lim _{h \rightarrow 0}|f(a+h)-f(a)-\lambda(h)|+|\lambda(h)|=\lim _{h \rightarrow 0}|f(a+h)-f(a)-\lambda(h)|+\lim _{h \rightarrow 0}|\lambda(h)|=0+0=0 .
$$

Since $0 \leq|f(a+h)-f(a)| \leq|f(a+h)-f(a)-\lambda(h)|+|\lambda(h)|$, by the squeeze theorem $\lim _{h \rightarrow 0}|f(a+h)-f(a)|$
must be 0 , which implies f is continuous at a.
2. Proof of (a). If $x=0$, then $h(t)=f(t \cdot 0)=f(0)=0$ is constant so it is certainly differentiable.

Suppose $x \neq 0$. We first show h is differentiable at 0 . $h(0)=f(0 \cdot x)=f(0)=0$. Thus

$$
\lim _{t \rightarrow 0^{+}} \frac{h(t)-h(0)}{t}=\lim _{t \rightarrow 0^{+}} \frac{f(t x)-0}{t}=\lim _{t \rightarrow 0^{+}} \frac{|t x| \cdot g\left(\frac{t x}{|t||x|}\right)}{t}=\lim _{t \rightarrow 0^{+}} \frac{t|x| \cdot g\left(\frac{t x}{t|x|}\right)}{t}=|x| g\left(\frac{x}{|x|}\right)
$$

Similarly, since $g(-x)=-g(x)$, it follows that

$$
\lim _{t \rightarrow 0^{-}} \frac{h(t)-h(0)}{t}=\lim _{t \rightarrow 0^{-}} \frac{f(t x)-0}{t}=\lim _{t \rightarrow 0^{-}} \frac{|t x| \cdot g\left(\frac{t x}{|t||x|}\right)}{t}=\lim _{t \rightarrow 0^{-}} \frac{-t|x| \cdot g\left(\frac{t x}{-t|x|}\right)}{t}=-|x| \cdot g\left(\frac{x}{-|x|}\right)=|x| g\left(\frac{x}{|x|}\right)
$$

So h is differentiable at 0 with $h^{\prime}(0)=|x| g\left(\frac{x}{|x|}\right)$.
Now let $t \in \mathbb{R}$ be nonzero. Suppose $t>0$. Then we can choose $s \in \mathbb{R}$ to be such that $|s|$ is sufficiently small so that $t+s>0$. Hence

$$
\begin{aligned}
\lim _{s \rightarrow 0} \frac{h(t+s)-h(t)}{t} & =\lim _{s \rightarrow 0} \frac{f((t+s) x)-f(t x)}{s}=\lim _{s \rightarrow 0} \frac{|t+s||x| \cdot g\left(\frac{(t+s) x}{|t+s||x|}\right)-|t||x| \cdot g\left(\frac{t x}{|t||x|}\right)}{s} \\
& =\lim _{s \rightarrow 0} \frac{(t+s)|x| \cdot g\left(\frac{(t+s) x}{(t+s)|x|}\right)-t|x| \cdot g\left(\frac{t x}{t|x|}\right)}{s}=\lim _{s \rightarrow 0} \frac{(t+s)|x| \cdot g\left(\frac{x}{|x|}\right)-t|x| \cdot g\left(\frac{x}{|x|}\right)}{s} \\
& =\lim _{s \rightarrow 0} \frac{s|x| \cdot g\left(\frac{x}{|x|}\right)}{s}=|x| g\left(\frac{x}{|x|}\right)
\end{aligned}
$$

So h is differentiable at t when $t>0$ with $h^{\prime}(t)=|x| g\left(\frac{x}{|x|}\right)$.
Suppose $t<0$. Similarly as above, we can choose $s \in \mathbb{R}$ to be such that $|s|$ is sufficiently small so that $t+s<0$. Apply $g(-x)=-g(x)$ and we have:

$$
\begin{aligned}
\lim _{s \rightarrow 0} \frac{h(t+s)-h(t)}{t} & =\lim _{s \rightarrow 0} \frac{f((t+s) x)-f(t x)}{s}=\lim _{s \rightarrow 0} \frac{|t+s||x| \cdot g\left(\frac{(t+s) x}{|t+s||x|}\right)-|t||x| \cdot g\left(\frac{t x}{|t||x|}\right)}{s} \\
& =\lim _{s \rightarrow 0} \frac{-(t+s)|x| \cdot g\left(\frac{(t+s) x}{-(t+s)|x|}\right)+t|x| \cdot g\left(\frac{t x}{-t|x|}\right)}{s}=\lim _{s \rightarrow 0} \frac{(t+s)|x| \cdot g\left(\frac{x}{|x|}\right)-t|x| \cdot g\left(\frac{x}{|x|}\right)}{s} \\
& =\lim _{s \rightarrow 0} \frac{s|x| \cdot g\left(\frac{x}{|x|}\right)}{s}=|x| g\left(\frac{x}{|x|}\right)
\end{aligned}
$$

Thus h is differentiable at t when $t<0$ with $h^{\prime}(t)=|x| g\left(\frac{x}{|x|}\right)$ and this proves h is differentiable on \mathbb{R}.

Proof of (b). If $g=0$, then $f=0$ so clearly f is differentiable at 0 .
Suppose $g \neq 0$. Assume f is differentiable at $(0,0)$ and $\lambda: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is its differential at $(0,0)$. Then

$$
\lim _{(h, k) \rightarrow 0} \frac{|f(h, k)-f(0,0)-\lambda(h, k)|}{|(h, k)|}=\lim _{(h, k) \rightarrow 0} \frac{| |(h, k)\left|g\left(\frac{(h, k)}{\mid(h, k \mid)}\right)-\lambda(h, k)\right|}{|(h, k)|}=0
$$

. In particular, since $g(1,0)=0$ and $g(-1,0)=-g(1,0)=0$, we have:

$$
\lim _{(h, 0) \rightarrow 0} \frac{| | h\left|g\left(\frac{(h, 0)}{|h|}\right)-\lambda(h, 0)\right|}{|h|}=\lim _{(h, 0) \rightarrow 0} \frac{| | h|g(\pm 1,0)-\lambda(h, 0)|}{|h|}=\lim _{(h, 0) \rightarrow 0} \frac{|\lambda(h, 0)|}{|h|}=0
$$

. Similarly, since $g(0,1)=0$ and $g(0,-1)=-g(0,1)=0$, we have:

$$
\lim _{(0, k) \rightarrow 0} \frac{| | k\left|g\left(\frac{(0, k)}{|k|}\right)-\lambda(0, k)\right|}{|k|}=\lim _{(0, k) \rightarrow 0} \frac{| | k|g(0, \pm 1)-\lambda(0, k)|}{|k|}=\lim _{(0, k) \rightarrow 0} \frac{|\lambda(0, k)|}{|k|}=0
$$

By linearity of λ, it follows that

$$
\frac{|\lambda(h, k)|}{|(h, k)|}=\frac{|\lambda(h, 0)+\lambda(0, k)|}{|(h, k)|} \leq \frac{|\lambda(h, 0)|+|\lambda(0, k)|}{|(h, k)|} \leq \frac{|\lambda(h, 0)|}{|h|}+\frac{|\lambda(0, k)|}{|k|}
$$

By \star and $\star \star, \lim _{(h, k) \rightarrow 0} \frac{|\lambda(h, 0)|}{|h|}+\frac{|\lambda(0, k)|}{|k|}=\lim _{(h, 0) \rightarrow 0} \frac{|\lambda(h, 0)|}{|h|}+\lim _{(0, k) \rightarrow 0} \frac{|\lambda(0, k)|}{|k|}=0+0=0$.

Since $0 \leq \frac{|\lambda(h, k)|}{|(h, k)|} \leq \frac{|\lambda(h, 0)|}{|h|}+\frac{|\lambda(0, k)|}{|k|}$, by the squeeze theorem $\lim _{(h, k) \rightarrow 0} \frac{|\lambda(h, k)|}{|(h, k)|}=0$.

Since λ is linear, from the discussion in the lecture we know $\lim _{(h, k) \rightarrow 0} \frac{|\lambda(h, k)|}{|(h, k)|}=0$ implies $\lambda=0$.

By assumption $g \neq 0$, so there exists $z \in \mathbb{R}^{2}$ s.t. $z \neq 0$ and $g\left(\frac{z}{|z|}\right) \neq 0$. (Note that $\frac{z}{|z|} \in S^{1}$)

Since λ is the differential of f at $(0,0)$, it must be true that $\lim _{t \rightarrow 0} \frac{|f(t z)-f(0,0)-\lambda(t z)|}{|t z|}=0$, where $t \in \mathbb{R}$.
But on the other hand, since $\lambda=0$ and $g\left(-\frac{z}{|z|}\right)=-g\left(\frac{z}{|z|}\right)$, it follows that

$$
\lim _{t \rightarrow 0} \frac{|f(t z)-f(0,0)-\lambda(t z)|}{|t z|}=\lim _{t \rightarrow 0} \frac{| | t z\left|g\left(\frac{t z}{|t z|}\right)\right|}{|t z|}=\lim _{t \rightarrow 0}\left|g\left(\pm \frac{z}{|z|}\right)\right|=\left|g\left(\frac{z}{|z|}\right)\right| \neq 0
$$

This is a contradiction. Hence f cannot be differentiable at $(0,0)$.
3. Proof. Since $|f(x)| \leq|x|$, in particular $|f(0)| \leq|0|^{2}=0$. Thus $f(0)=0$. Let λ be the zero linear transformation. Then

$$
\frac{|f(h)-f(0)-\lambda(h)|}{|h|}=\frac{|f(h)|}{|h|} \leq \frac{|h|^{2}}{|h|}=|h|
$$

Since $\lim _{h \rightarrow 0}|h|=0$ and $\frac{|f(h)-f(0)-\lambda(h)|}{|h|} \geq 0$, by the squeeze theorem we have

$$
\lim _{h \rightarrow 0} \frac{|f(h)-f(0)-\lambda(h)|}{|h|}=0
$$

Thus f is differentiable at 0 with derivative $D f(0)=\lambda=0$.
4. (a). $f(x, y, z)=x^{y}=e^{y \log x}$, so $f=\exp \circ p \circ g$, where $\exp : \mathbb{R} \rightarrow \mathbb{R}, p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ are defined by $\exp (a)=e^{a}, p(c, d)=c \cdot d, p(x, y, z)=(\log x, y)$, respectively.

By the Chain Rule: $D f(x, y, z)=D(\exp \circ p \circ g)(x, y, z)=D \exp (p \circ g(x, y, z)) \cdot D p(g(x, y, z)) \cdot D g(x, y, z)$.
$D g(x, y, z)=\binom{D g_{1}(x, y, z)}{D g_{2}(x, y, z)}$, where g_{1}, g_{2} are the component functions of g defined by $g_{1}(x, y, z)=\log x, g_{2}(x, y, z)=y$.
Thus $D g_{1}(x, y, z)=\left(\begin{array}{ccc}\frac{1}{x} & 0 & 0\end{array}\right)$ and $D g_{2}(x, y, z)=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$
So $D g(x, y, z)=\left(\begin{array}{ccc}\frac{1}{x} & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. By Spivak Theorem 2-3: $D p(c, d)=\left(\begin{array}{ll}d & c\end{array}\right)$.
So $D p(g(x, y, z))=D p(\log x, y)=\left(\begin{array}{ll}y & \log x\end{array}\right)$.
Since $D \exp (a)=e^{a}, D \exp (p \circ g(x, y, z))=D \exp (y \log x)=\left(e^{y \log x}\right)=\left(x^{y}\right)$
Therefore, $D f(x, y, z)=\left(x^{y}\right) \cdot\left(\begin{array}{ll}y & \log x\end{array}\right) \cdot\left(\begin{array}{ccc}\frac{1}{x} & 0 & 0 \\ 0 & 1 & 0\end{array}\right)=\left(\begin{array}{lll}y x^{y-1} & x^{y} \log x & 0\end{array}\right)$
(b). $f(x, y, z)=\left(f_{1}(x, y, z), f_{2}(x, y, z)\right)$ where f_{1}, f_{2} are the component functions of f defined by
$f_{1}(x, y, z)=x^{y}, f_{2}(x, y, z)=z$. So $D f(x, y, z)=\binom{D f_{1}(x, y, z)}{D f_{2}(x, y, z)}$. Clearly $D f_{2}(x, y, z)=\left(\begin{array}{ll}0 & 0 \\ 1\end{array}\right)$.
By part(a), we know $D f_{2}(x, y, z)=\left(\begin{array}{lll}y x^{y-1} & x^{y} \log x & 0\end{array}\right)$. Therefore, $D f(x, y, z)=\left(\begin{array}{ccc}y x^{y-1} & x^{y} \log x & 0 \\ 0 & 0 & 1\end{array}\right)$
(g). $f(x, y, z)=(x+y)^{z}=e^{z \log (x+y)}$. So $f=\exp \circ p \circ g$, where $\exp : \mathbb{R} \rightarrow \mathbb{R}$ is the exponential function, $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $p(c, d)=c d$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is defined by $g(x, y, z)=(\log (x+y), z)$.

By the Chain Rule, $D f(x, y, z)=D \exp (p \circ g(x, y, z)) \cdot D p(g(x, y, z)) \cdot D g(x, y, z)$.
$D g(x, y, z)=\binom{D g_{1}(x, y, z)}{D g_{2}(x, y, z)}$ where g_{1}, g_{2} are the component functions of g defined by $g_{1}(x, y, z)=\log (x+y)$ and $g_{2}(x, y, z)=z$. Clearly $D g_{2}(x, y, z)=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$.

On the other hand, $g_{1}=\log \circ s$, where $s: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is defined by $s(x, y, z)=x+y$ and $\log : \mathbb{R}^{+} \rightarrow \mathbb{R}$.
Apply the Chain Rule again: $D g_{1}(x, y, z)=D \log (s(x, y, z)) \cdot D s(x, y, z)$. Since s is linear, $D_{s}(x, y, z)$ is simply the matrix of $s:\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$. Clearly $D \log (t)=\frac{1}{t}$, so $D \log (s(x, y, z))=\left(\frac{1}{x+y}\right)$.
Thus $D g_{1}(x, y, z)=\left(\frac{1}{x+y}\right) \cdot\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)=\left(\begin{array}{lll}\frac{1}{x+y} & \frac{1}{x+y} & 0\end{array}\right)$
So $D g(x, y, z)=\binom{D g_{1}(x, y, z)}{D g_{2}(x, y, z)}=\left(\begin{array}{ccc}\frac{1}{x+y} & \frac{1}{x+y} & 0 \\ 0 & 0 & 1\end{array}\right)$.
By Spivak Theorem 2-3: $D p(c, d)=\left(\begin{array}{ll}d & c\end{array}\right)$. So $D p(g(x, y, z))=D p(\log (x+y), z)=\left(\begin{array}{ll}z \quad \log (x+y)\end{array}\right)$. Since $D \exp (a)=$ $e^{a}, D \exp (p \circ g(x, y, z))=D \exp (z \log (x+y))=\left(e^{z \log (x+y)}\right)=\left((x+y)^{z}\right)$
Therefore,

$$
\begin{aligned}
D f(x, y, z) & =\left((x+y)^{z}\right) \cdot(z, \log (x+y)) \cdot\left(\begin{array}{ccc}
\frac{1}{x+y} & \frac{1}{x+y} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
z(x+y)^{z-1} & z(x+y)^{z-1} & (x+y)^{z} \log (x+y)
\end{array}\right)
\end{aligned}
$$

5. Proof of (a). Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis for \mathbb{R}^{n} and $\left\{d_{1}, \ldots, d_{m}\right\}$ be the standard basis for \mathbb{R}^{m}. Let $h=$ $\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{R}^{n}$ and $k=\left(k_{1}, \ldots, k_{m}\right) \in \mathbb{R}^{m}$ be nonzero. Then since f is bilinear, we have:

$$
f(h, k)=f\left(\sum_{i=1}^{n} h_{i} e_{i}, \sum_{j=1}^{m} k_{j} d_{j}\right)=\sum_{i=1}^{n} h_{i} f\left(e_{i}, \sum_{j=1}^{m} k_{j} d_{j}\right)=\sum_{i=1}^{n} h_{i} \sum_{j=1}^{m} k_{j} f\left(e_{i}, d_{j}\right)=\sum_{i, j} h_{i} k_{j} f\left(e_{i}, d_{j}\right)
$$

Hence

$$
\frac{|f(h, k)|}{|(h, k)|}=\frac{\left|\sum_{i, j} h_{i} k_{j} f\left(e_{i}, d_{j}\right)\right|}{|(h, k)|} \leq \frac{\sum_{i, j}\left|h_{i} k_{j} f\left(e_{i}, d_{j}\right)\right|}{|(h, k)|}=\frac{\sum_{i, j}\left|h_{i} k_{j}\right| \cdot\left|f\left(e_{i}, d_{j}\right)\right|}{|(h, k)|}
$$

Let $M_{h}=\max \left\{\left|h_{i}\right|: 1 \leq i \leq n\right\}$ and $M_{k}=\max \left\{\left|k_{j}\right|: 1 \leq j \leq m\right\}$. Since h, k are nonzero, both M_{h}, M_{k} are nonzero. Clearly both M_{k}, M_{h} are less than $|(h, k)|$. Thus for any $1 \leq i \leq n, 1 \leq j \leq m$ we have

$$
\frac{\left|h_{i} k_{j}\right| \cdot\left|f\left(e_{i}, d_{j}\right)\right|}{|(h, k)|}=\frac{\left|h_{i}\right| \cdot\left|k_{j}\right| \cdot\left|f\left(e_{i}, d_{j}\right)\right|}{|(h, k)|} \leq \frac{M_{h} \cdot M_{k} \cdot\left|f\left(e_{i}, d_{j}\right)\right|}{|(h, k)|} \leq \frac{M_{h} \cdot M_{k} \cdot\left|f\left(e_{i}, d_{j}\right)\right|}{M_{h}}=\left|M_{k}\right| \cdot\left|f\left(e_{i}, d_{j}\right)\right|
$$

Because $\lim _{k \rightarrow 0} M_{k}=\lim _{k \rightarrow 0} \max \left\{\left|k_{j}\right|: 1 \leq j \leq m\right\}=0$, it follows that $\lim _{k \rightarrow 0}\left|M_{k}\right| \cdot\left|f\left(e_{i}, d_{j}\right)\right|=0$.

Since $0 \leq \frac{\left|h_{i} k_{j}\right| \cdot\left|f\left(e_{i}, d_{j}\right)\right|}{|(h, k)|} \leq\left|M_{k}\right| \cdot\left|f\left(e_{i}, d_{j}\right)\right|$, by the squeeze theorem $\lim _{(h, k) \rightarrow 0} \frac{\left|h_{i} k_{j}\right| \cdot\left|f\left(e_{i}, d_{j}\right)\right|}{|(h, k)|}=0$
This is true for all i, j. Thus $\lim _{(h, k) \rightarrow 0} \frac{\sum_{i, j}\left|h_{i} k_{j}\right| \cdot\left|f\left(e_{i}, d_{j}\right)\right|}{|(h, k)|}=0$.

By $\star: 0 \leq \frac{|f(h, k)|}{|(h, k)|} \leq \frac{\sum_{i, j}\left|h_{i} k_{j}\right| \cdot\left|f\left(e_{i}, d_{j}\right)\right|}{|(h, k)|}$. So applying the squeeze theorem yields $\lim _{(h, k) \rightarrow 0} \frac{|f(h, k)|}{|(h, k)|}=0$.

Proof of (b). Fix $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$. Define $\varphi: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ by $\varphi(x, y)=f(a, y)+f(x, b)$, where $x \in \mathbb{R}^{n}$, $y \in \mathbb{R}^{m}$. By the biliearity of f, for $\alpha \in \mathbb{R},(z, w) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ we have:

$$
\begin{aligned}
\varphi(\alpha \cdot(z, w)+(x, y)) & =\varphi(\alpha z+x, \alpha w+y)=f(a, \alpha w+y)+f(\alpha z+x, b) \\
& =\alpha \cdot f(a, w)+f(a, y)+\alpha \cdot f(z, b)+f(x, b) \\
& =\varphi(x, y)+\alpha \cdot \varphi(z, w)
\end{aligned}
$$

Thus φ is a linear map. Consider

$$
\frac{|f(a+x, b+y)-f(a, b)-\varphi(x, y)|}{|(x, y)|}=\frac{|f(a, b)+f(a, y)+f(x, b)+f(x, y)-f(a, b)-f(a, y)-f(x, b)|}{|(x, y)|}=\frac{|f(x, y)|}{|(x, y)|}
$$

By part(a),

$$
\lim _{(x, y) \rightarrow 0} \frac{|f(a+x, b+y)-f(a, b)-\varphi(x, y)|}{|(x, y)|}=\lim _{(x, y) \rightarrow 0} \frac{|f(x, y)|}{|(x, y)|}=0
$$

By the definition of differentiability and uniqueness of the derivative, φ is precisely $D f(a, b)$.
i.e., $D f(a, b)(x, y)=\varphi(x, y)=f(a, y)+f(x, b)$

Proof of (c). Let $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the product function defined by $p(a, b)=a b$. Let $u, w \in \mathbb{R}$.
Then $p(u \cdot w+a, b)=(u w+a) b=u w b+a b=u \cdot p(w, b)+p(a, b)$.
Similarly $p(a, u \cdot w+b)=a(u w+b)=a u w+a b=u \cdot p(a, w)+p(a, b)$. So p is bilinear.
$\operatorname{By} \operatorname{part}(\mathrm{b}), D p(a, b)(x, y)=p(a, y)+p(x, b)=a y+x b$. But on the other hand, $a y+x b=\left(\begin{array}{ll}b & a\end{array}\right) \cdot\binom{x}{y}$
So by uniqueness of the derivative, $D p(a, b)=\left(\begin{array}{ll}b & a\end{array}\right)$, conforming with Spivak Theorem 2-3.
So this is a special case of part(b).
6. Proof. Since $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c, f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is defined by $f(a, b, c, d)=a d-b c$.

We may also regard f as a function from $\mathbb{R}^{2} \times \mathbb{R}^{2}$ into \mathbb{R} defined by $f((a, b),(c, d))=a d-b c$.
Let $(s, t) \in \mathbb{R}^{2}$ and $\beta \in \mathbb{R}$. Then

$$
\begin{aligned}
f(\beta \cdot(s, t)+(a, b),(c, d)) & =f((\beta s+a, \beta t+b),(c, d))=(\beta s+a) d-(\beta t+b) c \\
& =(a d-b c)+\beta(s d-t c)=f((a, b),(c, d))+\beta \cdot f((s, t),(c, d))
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f((a, b), \beta \cdot(s, t)+(c, d)) & =f((a, b),(\beta s+c, \beta t+d))=a(\beta t+d)-b(\beta s+c) \\
& =(a d-b c)+\beta \cdot(a t-b s)=f((a, b),(c, d))+\beta \cdot f((a, b),(s, t))
\end{aligned}
$$

Thus f is bilinear. By Q5, f is differentiable and for $(a, b, c, d) \in \mathbb{R}^{4},(x, y),(z, w) \in \mathbb{R}^{2}$, the derivative satisfy:

$$
D f((a, b),(c, d))((x, y),(z, w))=f((a, b),(z, w))+f((x, y),(c, d))=a w-b z+x d-y c=\left(\begin{array}{lll}
d & -c & -b \\
a
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)
$$

By uniqueness of the derivative, $D f(a, b, c, d)=\left(\begin{array}{llll}d & -c & -b & a\end{array}\right)$

