
MAT257 Assignment 3 Solution

1. Proof. Suppose f is differentiable at a ∈ Rn. Then there exists a linear map λ : Rn → Rm such that

lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h| = 0. By the limit law about products of limits, we have:

lim
h→0
|f(a+ h)− f(a)− λ(h)| = lim

h→0

|f(a+ h)− f(a)− λ(h)|
|h|

· |h| = lim
h→0

|f(a+ h)− f(a)− λ(h)|
|h|

· lim
h→0
|h| = 0 · 0 = 0

Consider |f(a+ h)− f(a)|. By the triangle inequality, we have:

|f(a+ h)− f(a)| = |f(a+ h)− f(a)− λ(h) + λ(h)| ≤ |f(a+ h)− f(a)− λ(h)|+ |λ(h)|

Since λ is linear, λ is continuous. So in particular, lim
h→0

λ(h) = λ(0) = 0.

Because lim
h→0
|f(a+ h)− f(a)− λ(h)| = 0, it follows that

lim
h→0
|f(a+ h)− f(a)− λ(h)|+ |λ(h)| = lim

h→0
|f(a+ h)− f(a)− λ(h)|+ lim

h→0
|λ(h)| = 0 + 0 = 0.

Since 0 ≤ |f(a+ h)− f(a)| ≤ |f(a+ h)− f(a)− λ(h)|+ |λ(h)|, by the squeeze theorem lim
h→0
|f(a+ h)− f(a)|

must be 0, which implies f is continuous at a.
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2. Proof of (a). If x = 0, then h(t) = f(t · 0) = f(0) = 0 is constant so it is certainly differentiable.

Suppose x 6= 0. We first show h is differentiable at 0. h(0) = f(0 · x) = f(0) = 0. Thus

lim
t→0+

h(t)− h(0)

t
= lim

t→0+

f(tx)− 0

t
= lim

t→0+

|tx| · g(
tx

|t||x|
)

t
= lim

t→0+

t|x| · g(
tx

t|x|
)

t
= |x|g(

x

|x|
)

Similarly, since g(−x) = −g(x), it follows that

lim
t→0−

h(t)− h(0)

t
= lim

t→0−

f(tx)− 0

t
= lim

t→0−

|tx| · g(
tx

|t||x|
)

t
= lim

t→0−

−t|x| · g(
tx

−t|x|
)

t
= −|x| · g(

x

−|x|
) = |x|g(

x

|x|
)

So h is differentiable at 0 with h′(0) = |x|g( x
|x| ).

Now let t ∈ R be nonzero. Suppose t > 0. Then we can choose s ∈ R to be such that |s| is sufficiently small so that

t+ s > 0. Hence

lim
s→0

h(t+ s)− h(t)

t
= lim

s→0

f((t+ s)x)− f(tx)

s
= lim

s→0

|t+ s||x| · g(
(t+ s)x

|t+ s||x|
)− |t||x| · g(

tx

|t||x|
)

s

= lim
s→0

(t+ s)|x| · g(
(t+ s)x

(t+ s)|x|
)− t|x| · g(

tx

t|x|
)

s
= lim

s→0

(t+ s)|x| · g(
x

|x|
)− t|x| · g(

x

|x|
)

s

= lim
s→0

s|x| · g(
x

|x|
)

s
= |x|g(

x

|x|
)

So h is differentiable at t when t > 0 with h′(t) = |x|g( x
|x| ).

Suppose t < 0. Similarly as above, we can choose s ∈ R to be such that |s| is sufficiently small so that t + s < 0. Apply

g(−x) = −g(x) and we have:

lim
s→0

h(t+ s)− h(t)

t
= lim

s→0

f((t+ s)x)− f(tx)

s
= lim

s→0

|t+ s||x| · g(
(t+ s)x

|t+ s||x|
)− |t||x| · g(

tx

|t||x|
)

s

= lim
s→0

−(t+ s)|x| · g(
(t+ s)x

−(t+ s)|x|
) + t|x| · g(

tx

−t|x|
)

s
= lim

s→0

(t+ s)|x| · g(
x

|x|
)− t|x| · g(

x

|x|
)

s

= lim
s→0

s|x| · g(
x

|x|
)

s
= |x|g(

x

|x|
)

Thus h is differentiable at t when t < 0 with h′(t) = |x|g( x
|x| ) and this proves h is differentiable on R.
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Proof of (b). If g = 0, then f = 0 so clearly f is differentiable at 0.

Suppose g 6= 0. Assume f is differentiable at (0, 0) and λ : R2 → R is its differential at (0, 0). Then

lim
(h,k)→0

|f(h, k)− f(0, 0)− λ(h, k)|
|(h, k)|

= lim
(h,k)→0

∣∣∣∣|(h, k)|g(
(h, k)

|(h, k|)
)− λ(h, k)

∣∣∣∣
|(h, k)|

= 0

. In particular, since g(1, 0) = 0 and g(−1, 0) = −g(1, 0) = 0, we have:

lim
(h,0)→0

∣∣∣∣|h|g(
(h, 0)

|h|
)− λ(h, 0)

∣∣∣∣
|h|

= lim
(h,0)→0

∣∣∣∣|h|g(±1, 0)− λ(h, 0)

∣∣∣∣
|h|

= lim
(h,0)→0

|λ(h, 0)|
|h|

= 0 F

. Similarly, since g(0, 1) = 0 and g(0,−1) = −g(0, 1) = 0, we have:

lim
(0,k)→0

∣∣∣∣|k|g(
(0, k)

|k|
)− λ(0, k)

∣∣∣∣
|k|

= lim
(0,k)→0

∣∣∣∣|k|g(0,±1)− λ(0, k)

∣∣∣∣
|k|

= lim
(0,k)→0

|λ(0, k)|
|k|

= 0 FF

By linearity of λ, it follows that

|λ(h, k)|
|(h, k)|

=
|λ(h, 0) + λ(0, k)|

|(h, k)|
≤ |λ(h, 0)|+ |λ(0, k)|

|(h, k)|
≤ |λ(h, 0)|

|h|
+
|λ(0, k)|
|k|

By F and FF, lim
(h,k)→0

|λ(h, 0)|
|h| +

|λ(0, k)|
|k| = lim

(h,0)→0

|λ(h, 0)|
|h| + lim

(0,k)→0

|λ(0, k)|
|k| = 0 + 0 = 0.

Since 0 ≤ |λ(h, k)|
|(h, k)| ≤

|λ(h, 0)|
|h| +

|λ(0, k)|
|k| , by the squeeze theorem lim

(h,k)→0

|λ(h, k)|
|(h, k)| = 0.

Since λ is linear, from the discussion in the lecture we know lim
(h,k)→0

|λ(h, k)|
|(h, k)| = 0 implies λ = 0.

By assumption g 6= 0, so there exists z ∈ R2 s.t. z 6= 0 and g( z
|z| ) 6= 0. (Note that z

|z| ∈ S
1)

Since λ is the differential of f at (0, 0), it must be true that lim
t→0

|f(tz)− f(0, 0)− λ(tz)|
|tz| = 0, where t ∈ R.

But on the other hand, since λ = 0 and g(− z
|z| ) = −g( z

|z| ), it follows that

lim
t→0

|f(tz)− f(0, 0)− λ(tz)|
|tz|

= lim
t→0

∣∣∣∣|tz|g(
tz

|tz|
)

∣∣∣∣
|tz|

= lim
t→0

∣∣∣∣g(± z

|z|
)

∣∣∣∣ =

∣∣∣∣g(
z

|z|
)

∣∣∣∣ 6= 0

This is a contradiction. Hence f cannot be differentiable at (0, 0).
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3. Proof. Since |f(x)| ≤ |x|, in particular |f(0)| ≤ |0|2 = 0. Thus f(0) = 0. Let λ be the zero linear transformation. Then

|f(h)− f(0)− λ(h)|
|h|

=
|f(h)|
|h|

≤ |h|
2

|h|
= |h|

Since lim
h→0
|h| = 0 and

|f(h)− f(0)− λ(h)|
|h| ≥ 0, by the squeeze theorem we have

lim
h→0

|f(h)− f(0)− λ(h)|
|h|

= 0.

Thus f is differentiable at 0 with derivative Df(0) = λ = 0.

4. (a). f(x, y, z) = xy = ey log x, so f = exp ◦p ◦ g, where exp : R → R, p : R2 → R and g : R3 → R2 are defined by

exp(a) = ea, p(c, d) = c · d, p(x, y, z) = (log x, y), respectively.

By the Chain Rule: Df(x, y, z) = D(exp ◦p ◦ g)(x, y, z) = D exp(p ◦ g(x, y, z)) ·Dp(g(x, y, z)) ·Dg(x, y, z).

Dg(x, y, z) =

Dg1(x, y, z)

Dg2(x, y, z)

, where g1, g2 are the component functions of g defined by g1(x, y, z) = log x, g2(x, y, z) = y.

Thus Dg1(x, y, z) =

(
1
x 0 0

)
and Dg2(x, y, z) =

(
0 1 0

)

So Dg(x, y, z) =

 1
x 0 0

0 1 0

. By Spivak Theorem 2-3: Dp(c, d) =

(
d c

)
.

So Dp(g(x, y, z)) = Dp(log x, y) =

(
y log x

)
.

Since D exp(a) = ea, D exp(p ◦ g(x, y, z)) = D exp(y log x) =

(
ey log x

)
=

(
xy
)

Therefore, Df(x, y, z) =

(
xy
)
·
(
y log x

)
·

 1
x 0 0

0 1 0

 =

(
yxy−1 xy log x 0

)

(b). f(x, y, z) = (f1(x, y, z), f2(x, y, z)) where f1, f2 are the component functions of f defined by

f1(x, y, z) = xy, f2(x, y, z) = z. So Df(x, y, z) =

Df1(x, y, z)

Df2(x, y, z)

. Clearly Df2(x, y, z) =

(
0 0 1

)
.

By part(a), we know Df2(x, y, z) =

(
yxy−1 xy log x 0

)
. Therefore, Df(x, y, z) =

yxy−1 xy log x 0

0 0 1


(g). f(x, y, z) = (x + y)z = ez log(x+y). So f = exp ◦p ◦ g, where exp : R → R is the exponential function, p : R2 → R is

defined by p(c, d) = cd and g : R3 → R2 is defined by g(x, y, z) = (log(x+ y), z).

By the Chain Rule, Df(x, y, z) = D exp(p ◦ g(x, y, z)) ·Dp(g(x, y, z)) ·Dg(x, y, z).

Dg(x, y, z) =

Dg1(x, y, z)

Dg2(x, y, z)

 where g1, g2 are the component functions of g defined by g1(x, y, z) = log(x + y) and

g2(x, y, z) = z. Clearly Dg2(x, y, z) =

(
0 0 1

)
.
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On the other hand, g1 = log ◦s, where s : R3 → R is defined by s(x, y, z) = x+ y and log : R+ → R.

Apply the Chain Rule again: Dg1(x, y, z) = D log(s(x, y, z)) ·Ds(x, y, z). Since s is linear, Ds(x, y, z) is simply the matrix

of s :

(
1 1 0

)
. Clearly D log(t) = 1

t , so D log(s(x, y, z)) =

(
1

x+y

)
.

Thus Dg1(x, y, z) =

(
1

x+y

)
·
(

1 1 0

)
=

(
1

x+y
1

x+y 0

)

So Dg(x, y, z) =

Dg1(x, y, z)

Dg2(x, y, z)

 =

 1
x+y

1
x+y 0

0 0 1

.

By Spivak Theorem 2-3: Dp(c, d) =

(
d c

)
. So Dp(g(x, y, z)) = Dp(log(x+ y), z) =

(
z log(x+ y)

)
. Since D exp(a) =

ea, D exp(p ◦ g(x, y, z)) = D exp(z log(x+ y)) =

(
ez log(x+y)

)
=

(
(x+ y)z

)
Therefore,

Df(x, y, z) =

(
(x+ y)z

)
·
(
z, log(x+ y)

)
·

 1
x+y

1
x+y 0

0 0 1


=

(
z(x+ y)z−1 z(x+ y)z−1 (x+ y)z log(x+ y)

)

5. Proof of (a). Let {e1, ..., en} be the standard basis for Rn and {d1, ..., dm} be the standard basis for Rm. Let h =

(h1, ..., hn) ∈ Rn and k = (k1, ..., km) ∈ Rm be nonzero. Then since f is bilinear, we have:

f(h, k) = f(

n∑
i=1

hiei,

m∑
j=1

kjdj) =

n∑
i=1

hif(ei,

m∑
j=1

kjdj) =

n∑
i=1

hi

m∑
j=1

kjf(ei, dj) =
∑
i,j

hikjf(ei, dj)

Hence

|f(h, k)|
|(h, k)|

=

∣∣∣∣∣∣
∑
i,j

hikjf(ei, dj)

∣∣∣∣∣∣
|(h, k)|

≤

∑
i,j

|hikjf(ei, dj)|

|(h, k)|
=

∑
i,j

|hikj | · |f(ei, dj)|

|(h, k)|
F

Let Mh = max{|hi| : 1 ≤ i ≤ n} and Mk = max{|kj | : 1 ≤ j ≤ m}. Since h, k are nonzero, both Mh,Mk are nonzero.

Clearly both Mk,Mh are less than |(h, k)|. Thus for any 1 ≤ i ≤ n, 1 ≤ j ≤ m we have

|hikj | · |f(ei, dj)|
|(h, k)|

=
|hi| · |kj | · |f(ei, dj)|

|(h, k)|
≤ Mh ·Mk · |f(ei, dj)|

|(h, k)|
≤ Mh ·Mk · |f(ei, dj)|

Mh
= |Mk| · |f(ei, dj)|.

Because lim
k→0

Mk = lim
k→0

max{|kj | : 1 ≤ j ≤ m} = 0, it follows that lim
k→0
|Mk| · |f(ei, dj)| = 0.

Since 0 ≤ |hikj | · |f(ei, dj)|
|(h, k)| ≤ |Mk| · |f(ei, dj)|, by the squeeze theorem lim

(h,k)→0

|hikj | · |f(ei, dj)|
|(h, k)| = 0

This is true for all i, j. Thus lim
(h,k)→0

∑
i,j

|hikj | · |f(ei, dj)|

|(h, k)| = 0.
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By F: 0 ≤ |f(h, k)|
|(h, k)| ≤

∑
i,j

|hikj | · |f(ei, dj)|

|(h, k)| . So applying the squeeze theorem yields lim
(h,k)→0

|f(h, k)|
|(h, k)| = 0.

Proof of (b). Fix (a, b) ∈ Rn × Rm. Define ϕ : Rn × Rm → Rp by ϕ(x, y) = f(a, y) + f(x, b), where x ∈ Rn,

y ∈ Rm. By the biliearity of f , for α ∈ R, (z, w) ∈ Rn × Rm we have:

ϕ(α · (z, w) + (x, y)) = ϕ(αz + x, αw + y) = f(a, αw + y) + f(αz + x, b)

= α · f(a,w) + f(a, y) + α · f(z, b) + f(x, b)

= ϕ(x, y) + α · ϕ(z, w)

Thus ϕ is a linear map. Consider

|f(a+ x, b+ y)− f(a, b)− ϕ(x, y)|
|(x, y)|

=
|f(a, b) + f(a, y) + f(x, b) + f(x, y)− f(a, b)− f(a, y)− f(x, b)|

|(x, y)|
=
|f(x, y)|
|(x, y)|

By part(a),

lim
(x,y)→0

|f(a+ x, b+ y)− f(a, b)− ϕ(x, y)|
|(x, y)|

= lim
(x,y)→0

|f(x, y)|
|(x, y)|

= 0

By the definition of differentiability and uniqueness of the derivative, ϕ is precisely Df(a, b).

i.e., Df(a, b)(x, y) = ϕ(x, y) = f(a, y) + f(x, b)

Proof of (c). Let p : R2 → R be the product function defined by p(a, b) = ab. Let u,w ∈ R.

Then p(u · w + a, b) = (uw + a)b = uwb+ ab = u · p(w, b) + p(a, b).

Similarly p(a, u · w + b) = a(uw + b) = auw + ab = u · p(a,w) + p(a, b). So p is bilinear.

By part(b), Dp(a, b)(x, y) = p(a, y) + p(x, b) = ay + xb. But on the other hand, ay + xb =

(
b a

)
·

x
y


So by uniqueness of the derivative, Dp(a, b) =

(
b a

)
, conforming with Spivak Theorem 2-3.

So this is a special case of part(b).
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6. Proof. Since det

a b

c d

 = ad− bc, f : R4 → R is defined by f(a, b, c, d) = ad− bc.

We may also regard f as a function from R2 × R2 into R defined by f((a, b), (c, d)) = ad− bc.

Let (s, t) ∈ R2 and β ∈ R. Then

f(β · (s, t) + (a, b), (c, d)) = f((βs+ a, βt+ b), (c, d)) = (βs+ a)d− (βt+ b)c

= (ad− bc) + β(sd− tc) = f((a, b), (c, d)) + β · f((s, t), (c, d)).

Similarly,

f((a, b), β · (s, t) + (c, d)) = f((a, b), (βs+ c, βt+ d)) = a(βt+ d)− b(βs+ c)

= (ad− bc) + β · (at− bs) = f((a, b), (c, d)) + β · f((a, b), (s, t)).

Thus f is bilinear. By Q5, f is differentiable and for (a, b, c, d) ∈ R4, (x, y), (z, w) ∈ R2, the derivative satisfy:

Df((a, b), (c, d))((x, y), (z, w)) = f((a, b), (z, w)) + f((x, y), (c, d)) = aw − bz + xd− yc =

(
d −c −b a

)
·



x

y

z

w



By uniqueness of the derivative, Df(a, b, c, d) =

(
d −c −b a

)
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