MAT257 Assignment 3 Solution

1. Proof. Suppose f is differentiable at a € R™. Then there exists a linear map A : R™ — R™ such that

}lLin%) |f(a+h) —”{‘(a) — A(h)] = 0. By the limit law about products of limits, we have:
—

h) — — AR h) — —Ah

Consider |f(a+ h) — f(a)|. By the triangle inequality, we have:

[Fla+h) = f(@)] = [f(a+h) = fa) = (k) + A(W)] < [ F(a+h) — f(a) = A(B)] + |A(R)]

Since A is linear, A is continuous. So in particular, %in%) A(h) = A(0) = 0.
—

Because }ILI_% |f(a+h) — f(a) — A(h)| =0, it follows that
lim [f(a + h) — f(a) — M|+ A = lim |(a + B) ~ F(a) ~ A(R)| + lim [\(B) =040 =0

h—0

Since 0 < |f(a+ h) — f(a)| < |f(a+ h) — f(a) — A(R)| 4+ [A(R)], by the squeeze theorem ’lliﬁmo|f(a+h) — f(a)]

must be 0, which implies f is continuous at a.



2. Proof of (a). If x =0, then h(t) = f(¢-0) = f(0) = 0 is constant so it is certainly differentiable.
Suppose x # 0. We first show h is differentiable at 0. h(0) = f(0-z) = f(0) = 0. Thus

ta] - g(— ) te| - g(-o)
_h({t)—h(0) . ftz)—0 . I LA™ x
lim —4—~2% = lim ———— = lim = 1i |z|g(—)
t—0+ t t—0+ t t—0+ t t—0+ t ||
Similarly, since g(—z) = —g(x), it follows that
tx tx
tx| - g(—— —t|x| -
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So h is differentiable at 0 with 2'(0) = |:17|g(|%|)
Now let t € R be nonzero. Suppose t > 0. Then we can choose s € R to be such that |s| is sufficiently small so that

t+ s> 0. Hence

(t+ s)x tx
|t +sllzl - 9(o———) = ltl=] - 9(77=)
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(t+ s)x tx x x
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So h is differentiable at ¢ when t > 0 with A'(t) = [z[g(p)-
Suppose t < 0. Similarly as above, we can choose s € R to be such that |s| is sufficiently small so that ¢ + s < 0. Apply

g(—x) = —g(z) and we have:

(t+ s)x tx
t+ sllzl - 9(C7——) = Izl - 9(57=)
B h() (s~ f) sl e
s—0 t s—0 S s—0 S
(t+ s)x tx x x
—(t+ sl - g(———5=) +tlel-9(—=—~) (t+ )|l -g(—) — el - 9()
_ —(t +5)lz| —tlz|” _ |z] ]
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x
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Thus h is differentiable at ¢ when ¢ < 0 with A/(t) = |x|g(‘§—|) and this proves h is differentiable on R. O



Proof of (b). If g =0, then f =0 so clearly f is differentiable at 0.
Suppose g # 0. Assume f is differentiable at (0,0) and X : R? — R is its differential at (0,0). Then

(h, k)
h,k)lg —A\hk
s mey [ ORleE - A0
lim = lim =0
(h,k)=0 |(h, k)| (k) =0 |(h, k)
. In particular, since ¢(1,0) =0 and g(—1,0) = —g(1,0) = 0, we have:
h,0
s ) - a.0) I1lg(£1.0) = A(1.0) "
lim || — lm I P LA (1)
(h,0)—=0 |h] (h,0)—=0 || (h,0)=0  |h
. Similarly, since g(0,1) =0 and g(0,—1) = —g(0,1) = 0, we have:
0,k
115 - a0, I£19(0,1) = X(0. 1) o
, || _ _ e ROR
lim = lim = lim =0 %%
(0,k)—0 k| (0,k)—0 || (0,k)—0 |k

By linearity of A, it follows that

(AR (AR, 0) £ A0, F)]  [AGR, 0) + MO, K)| _ [A(R,0)] | [A(O,K)|

= < < +
|(h, k)| |(h, k)] |(h, k)] |h| |K|
By * and **7 lim ‘)\(h,O)| + |)‘(ka)| — 1im |>‘(h’0)| + hm M — 0 + 0 — 0
(hk)—0 | |K| (h,0)—0  |h] k)0 |kl

; Ah, k)| [A(R,0)] | [A(0, k)| iy ALK
S CeO<| : < ! + —1 by the squeeze theore | T = 0.
P TR = R 2 P PR o TR,
Since A is linear, from the discussion in the lecture we know lim [ACh, )| = 0 implies A = 0.
(k)0 |(h, k)|

By assumption g # 0, so there exists z € R? s.t. z # 0 and 9(F) # 0. (Note that % € Sh)

Since A is the differential of f at (0,0), it must be true that llr% |f(tz) = f(|?z’|0) — Altz)] =0, where ¢t € R.
—

But on the other hand, since A = 0 and g(—é—‘) = —g(‘f)7 it follows that
=

2o )]
) — 0.0 Al _ |G
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This is a contradiction. Hence f cannot be differentiable at (0,0).



3. Proof. Since |f(x)| < |z, in particular |f(0)| < |0/> = 0. Thus f(0) = 0. Let A be the zero linear transformation. Then

£ = FO) A _[Fm] _ e _
1] L
Since ’llin%) |h| =0 and |/ (h) = f|§3) — Ah)| > 0, by the squeeze theorem we have
—
o B0 =1 = Am)
h—0 ||
Thus f is differentiable at 0 with derivative Df(0) = A = 0. O

4. (a). f(z,y,2) = x¥ = e¥1°8% 5o f = expopo g, where exp : R = R, p : R> = R and g : R* — R? are defined by
exp(a) = e, p(c,d) =c-d, p(z,y,z) = (logz,y), respectively.

By the Chain Rule: Df(l',y,Z) = D(expopog)(x,%z) = Dexp(pog($7yaz)) : Dp(g(x,y,z)) : Dg(x,y,z)

Dgi(x,y, 2
Dyg(z,y,z) = 1(®9,2) , where g1, g2 are the component functions of g defined by ¢1(z,y,2) = logz, g2(z,y,2) = y.
DgQ(mv Y, Z)
Thus Dgl(xa y,Z) <i 0 O> and Dgg(fﬂ, Y, Z) = <O 1 0>
100
So Dg(z,y,z) = . By Spivak Theorem 2-3: Dp(c,d) = <d c)-
0 1 0

So Dp(g(z,y, 2)) = Dp(logz,y) = (y logx)-

Since Dexp(a) = e%, Dexp(po g(z,y,2)) = Dexp(ylogz) = (ey logz) = (xy)

1
= 0 0
Therefore, Df(x,y, z) = <xy> : (y logm) o = (yxy_l z¥logx O>
0 1 0
O
(b). f(z,y,2) = (fr(z,y, 2), fo(x,y,2)) where fi, fo are the component functions of f defined by
Dfl(xvyvz)
fl(l',y,Z):.’L'y, fg(l’,y,Z):Z. So Df((E,y,Z): . Clearly ng(l‘,y72): 0O 0 1])-
ng(x,y,z)
yx¥~t z¥logx 0
By part(a), we know D fo(z,y,2) = (yg;y—l z¥log 0). Therefore, D f(x,y,2) = O
0 0 1

(9). f(z,y,2) = (xz +y)* = e*1°8=+Y) S0 f = expopo g, where exp : R — R is the exponential function, p : R? — R is

defined by p(c,d) = cd and g : R? — R? is defined by g(z,v,2) = (log(z + ¥), 2).

By the Chain Rule, Df(x,y,2) = Dexp(po g(z,vy,2)) - Dp(g(x,y, 2)) - Dg(z,y, 2).

Dyg(x,y,2z) = iglimvy’zi where ¢1,¢9> are the component functions of g defined by gi(x,y,z) = log(z + y) and
92\%, Y,z

92(,y,2) = z. Clearly Dga(z,y,2) = (0 0 1>.



On the other hand, g; = logos, where s : R* — R is defined by s(z,y,2) =  +y and log : Rt — R.

Apply the Chain Rule again: Dg;(x,y,z) = Dlog(s(z,y, 2)) - Ds(z,y, z). Since s is linear, Dy(z,y, z) is simply the matrix

of s: 1 1 0>. Clearly Dlog(t) = % so Dlog(s(x Y,2)) = xiy)
Thus Dgl(xa:%Z) = <x+y {1 x+y ziy 0)
D1 (z, v, 11
So Dg(z,y,z) = 2 S
DgQ z, Y,z 0
By Spivak Theorem 2-3: Dp(c, d) d . So Dp(g(z,y,2)) = Dp(log(z + y),2) = | z log(x + y)> Since D exp(a) =

e?, Dexp(po g(z,y,2)) = Dexp(zlog(x + y)) = (eZIOg(””JFy)) = ((m + y)z>

Therefore,
1 1
Df(x,y,2) = ((:E + y)z> : (z,log(:ﬂ + y)) o A
0 0 1

= (Z(m +y) 7t 2z +y)t (+y) log(z + y))

. Proof of (a). Let {e1,...,e,} be the standard basis for R™ and {di,...,d,} be the standard basis for R™. Let h =

(h1,....hpn) € R® and k = (k1, ..., k) € R™ be nonzero. Then since f is bilinear, we have:

m

= O hiei, Y kid;) thezz Zh Zkfez, th‘fe“
i=1 j=1 i=1 i—1

Hence

- D ohikif(end)| 3 hikyflendy)l Y hiky] (e dy)]
JE) | i _ i
O | 0 N (V)] (2] *

Let My = maz{|h;| : 1 < i < n} and My = maz{|k;| : 1 < j < m}. Since h, k are nonzero, both M}, M}, are nonzero.
Clearly both My, My, are less than |(h, k)|. Thus for any 1 <i <n,1 < j < m we have
|hikj| - | f(es, dj)| _ |Ral - k)l - [f(eiy dj)| _ Mp - My - [f(ei, dj)| _ Mp - My - | f(ei, dj)|

[0 IR 7 e [ | R i — M - |f(enr ;).

Because lim M, = lim maz{|k;|: 1 < j <m} =0, it follows that lim |My| - |f(e;,d;)| = 0.
k—0 k—0 k—0

| ksl - £ (e1.)| e d, TR LLALCI
Since 0 < %) < |Mjg]| - |f(ei,d;)|, by the squeeze theorem (h’lir)rio Tk =0

Z |hik| - | f (€s, d;)]

This is true for all 4, 7. Thus (h’l]icr)n_>0 I (3] =0.




Z \hikj| - | f (e, dj)l

By 4: 0 < LR i . lying th b s lim LULRI
v %: 0< R = (%3] So applying the squeeze theorem yields (h,llcr)ILO (X3

Proof of (b). Fix (a,b) € R™ x R™. Define ¢ : R™ x R™ — R? by o(z,y) = f(a,y) + f(z,b), where z € R,

y € R™. By the biliearity of f, for a € R, (z,w) € R"™ x R™ we have:

o0 () + (29)) = plaz + 20w +y) = f(a,aw +5) + flaz + 2,0
:oz~f(a,w)+f(a,y)+oc-f(z,b)—|—f(x,b)

= p(z,y) + a-p(z,w)

Thus ¢ is a linear map. Consider

[fla+zb+y) — fla,b) —p(x,y)| _ [fla,b) + fla,y) + f(z,b) + f(z,y) — fa,b) — fla,y) — f(=,0)] _ |f(z,9)]

(=, y)| (=, y)| |(z, )]
By part(a),
i letabty) = flab) -yl . @yl
(2,y)—0 [(z, ) (@y)—0 [(z,9)]

By the definition of differentiability and uniqueness of the derivative, ¢ is precisely D f(a,b).

ie, Df(a,b)(z,y) = ¢(z,y) = f(a,y) + f(z,b)

Proof of (c). Let p: R? — R be the product function defined by p(a,b) = ab. Let u,w € R.
Then p(u - w + a,b) = (uw + a)b = uwb + ab = u - p(w, b) + p(a, b).

Similarly p(a,u - w +b) = a(uw + b) = auw + ab = u - p(a, w) + p(a,b). So p is bilinear.

By part(b), Dp(a,b)(z,y) = p(a,y) + p(x,b) = ay + xb. But on the other hand, ay + zb = (b a) .

So by uniqueness of the derivative, Dp(a,b) = (b a), conforming with Spivak Theorem 2-3.

So this is a special case of part(b).



a b
6. Proof. Since det ( ) =ad — be, f: R* = R is defined by f(a,b,c,d) = ad — be.
c d

We may also regard f as a function from R? x R? into R defined by f((a,b), (c,d)) = ad — be.

Let (s,t) € R? and B € R. Then

f(ﬁ : (S7t) + (a’b)7 (C’ d)) = f((ﬂs +a, Bt + b)a (Cv d)) = (53 + a)d - (Bt + b)C
= (a‘d - bc) + B(Sd - tc) = f((a,b), (07 d)) + B : f((87t)7 (C, d))

Similarly,

f((av b)?ﬁ : (Sat) + (Cv d)) = f((a7b)7 (/65 +c, Bt + d)) = a(ﬁt + d) - b(ﬁs + C)
= (ad —be) + B (at — bs) = f((a,b), (C7 d)) +08- f((a7b)7 (s,1)).

Thus f is bilinear. By Q5, f is differentiable and for (a,b, c,d) € R*, (x,%), (z,w) € R?, the derivative satisfy:

Df((a’ b)7 (C’ d))((l’,y), (Z7w)) = f((a7 b)v (Z7w)) + f((x,y), (C, d)) =aw — bz + xd — yc = <d —c —b CL) :

By uniqueness of the derivative, D f(a,b,¢,d) = <d —¢c —b a)



