1. (a) Let $x \in \mathbb{R}^{n}$. If $|x|<1$, then x is contained in the unit open ball, which is a subset of A_{1}. If $|x|=1$, then every open ball centered at x intersects both A_{1} and $A_{1}{ }^{\mathrm{C}}$. If $|x|>1$, then x is contained in the open ball centered at x of radius $|x|-1$, which is disjoint from A_{1}. Hence, the interior of A_{1} is $\left\{x \in \mathbb{R}^{n}| | x \mid<1\right\}$, the exterior of A_{1} is $\left\{x \in \mathbb{R}^{n}| | x \mid>1\right\}$, and the boundary of A_{1} is $\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}$.
(b) Let $x \in \mathbb{R}^{n}$. If $|x|<1$, then x is contained in the unit open ball, which is disjoint from A_{2}. If $|x|=1$, then every open ball centered at x intersects both A_{2} and $A_{2}{ }^{\mathrm{C}}$. If $|x|>1$, then x is contained in the open ball centered at x of radius $|x|-1$, which is disjoint from A_{2}. Hence, the interior of A_{2} is \varnothing, the exterior of A_{2} is $\left\{x \in \mathbb{R}^{n}| | x \mid \neq 1\right\}$, and the boundary of A_{2} is itself.
(c) Every open ball in \mathbb{R}^{n} intersects both A_{3} and $A_{3}{ }^{\mathrm{C}}$, so the boundary of A_{3} is \mathbb{R}^{n} and the interior and exterior are \varnothing.
2. (a) A is closed, so A^{C} is open, and there exists an open ball $B_{r}(p)=\left\{q \in \mathbb{R}^{n}| | q-p \mid<r\right\}$ such that $x \in B_{r}(p)$ and $B_{r}(p) \subset A^{\mathrm{C}}$. Let $d=r-|x-p|$. Then $d>0$, and for all $y \in A$,

$$
\begin{aligned}
|y-x| & \geq|y-p|-|x-p| \quad \text { (The triangle inequality) } \\
& \geq r-|x-p| \quad\left(y \notin B_{r}(p)\right) \\
& =d
\end{aligned}
$$

(b) By (a), for every $y \in B$, there exsits $d_{y}>0$ such that $|y-x| \geq d_{y}$ for all $x \in A$. The collection of open balls $\left\{B_{d_{y} / 2}(y) \mid y \in B\right\}$ covers B, so by compactness there exist $y_{1}, \ldots, y_{m} \in B\left(m \in \mathbb{Z}_{+}\right)$such that $\left\{B_{d_{y_{1} / 2}}\left(y_{1}\right), \ldots, B_{d_{y_{m} / 2}}\left(y_{m}\right)\right\}$ covers B. Let $d=$ $\min _{i=1}^{m}\left\{d_{y_{i}} / 2\right\} \in \mathbb{R}_{+}$. Let $y \in B$. Then there is some i such that $y \in B_{d_{y_{i}} / 2}\left(y_{i}\right)$. For all $x \in A$,

$$
\begin{aligned}
|y-x| & \geq\left|y_{i}-x\right|-\left|y-y_{i}\right| \\
& >d_{y_{i}}-d_{y_{i}} / 2 \\
& =d_{y_{i}} / 2 \\
& \geq d
\end{aligned}
$$

(c) Let $A=\mathbb{R} \times\{0\}, B=\left\{(x, 1 / x) \mid x \in \mathbb{R}_{+}\right\} . A$ and B are closed; also, they are unbounded and thus not compact. For every $d>0$, if $x>1 / d$ then the points $(x, 0)$ and $(x, 1 / x)$ are in A and B respectively, but their distance is $1 / x<d$.
3. If $C=\varnothing$, we can take $D=\varnothing$. Assume $C \neq \varnothing$.

Since U^{C} is closed and $C \subset U$ is compact, it follows from $\mathrm{Q} 2(\mathrm{~b})$ that there is some $d>0$ such that $|y-x| \geq d$ for all $x \in U^{\mathrm{C}}$ and $y \in C$, i.e. $B_{d}(y) \subset U$ for all $y \in C$.
Since C is compact and the collection of open balls $\left\{B_{d / 2}(y) \mid y \in C\right\}$ covers C, there exist $y_{1}, \ldots, y_{m} \in C\left(m \in \mathbb{Z}_{+}\right)$such that $\left\{B_{d / 2}\left(y_{1}\right), \ldots, B_{d / 2}\left(y_{m}\right)\right\}$ covers C. Let $D=$ $\bigcup_{i=1}^{m} \bar{B}_{d / 2}\left(y_{i}\right)$. (Let $\bar{B}_{r}(p)$, where $p \in \mathbb{R}^{n}$ and $r \in \mathbb{R}_{+}$, denote the closed ball centered at p with radius r.)

- D is closed because it is a finite union of closed sets.

By compactness, $|y| \leq M$ for all $y \in C$ for some $M \in \mathbb{R}_{+}$. Let $p \in D$. Then there is some i such that $p \in \bar{B}_{d / 2}\left(y_{i}\right)$, so $|p| \leq\left|p-y_{i}\right|+\left|y_{i}\right| \leq d / 2+M$. Therefore, D is bounded.
Since D is closed and bounded, it follows that D is compact.

- Let $y \in C$. Then there is some i such that $y \in B_{d / 2}\left(y_{i}\right)$. Since $B_{d / 2}\left(y_{i}\right) \subset D$, it follows that $y \in \operatorname{Int} D$. Hence, $C \subset \operatorname{Int} D$.
- For all $i, \bar{B}_{d / 2}\left(y_{i}\right) \subset B_{d}\left(y_{i}\right) \subset U$, so $D \subset U$.

4. By Assignment 1 Q 3 , there is some $M \in \mathbb{R}_{+}$such that $|T v| \leq M|v|$ for all $v \in \mathbb{R}^{n}$.

Let $v \in \mathbb{R}^{n}$. Let $\epsilon \in \mathbb{R}_{+}$be given. Take $\delta=\epsilon / M$. Then for all $u \in \mathbb{R}^{n}$ such that $|u-v|<\delta$, we have $|T u-T v|=|T(u-v)| \leq M|u-v|<\epsilon$. Therefore, T is continuous.
5. Let $\epsilon=1$. Let $\delta \in \mathbb{R}_{+}$. Define $g: \mathbb{R} \rightarrow \mathbb{R}, y \mapsto y^{2}+y-\delta^{2} / 4$. Since g is continuous and $g(0)=-\delta^{2} / 4<0$, there is some $y_{0}>0$ such that $g\left(y_{0}\right)<0$. Then $\delta^{2} / 4-y_{0}^{2}>y_{0}>0$. Let $x_{0}=\sqrt{\delta^{2} / 4-y_{0}^{2}}$. Then $\left|\left(x_{0}, y_{0}\right)\right|=\delta / 2, x_{0}>0$, and $y_{0}<\delta^{2} / 4-y_{0}{ }^{2}=x_{0}{ }^{2}$. Hence, $\left|\left(x_{0}, y_{0}\right)-(0,0)\right|<\delta$ but $\left|f\left(x_{0}, y_{0}\right)-f(0,0)\right|=1=\epsilon$. This implies that f is not continuous at $(0,0)$.
Let L be a straight line through $(0,0)$.

- If L is the y-axis or the slope of L is nonpositive, then $y \leq 0$ for all $(x, y) \in L$ such that $x>0$, so $\left.f\right|_{L}=0$ and thus $\left.f\right|_{L}$ is continuous at $(0,0)$.
- Let $k \in \mathbb{R}_{+}$be the slope of L. Then for $(x, y) \in L$ such that $|(x, y)-(0,0)|<k \sqrt{1+k^{2}}$,
- if $x \leq 0$, then surely $f(x, y)=0$;
- if $x>0$, then since $\sqrt{x^{2}+(k x)^{2}}<k \sqrt{1+k^{2}}$, we have $0<x<k$, so $y=k x>x^{2}$, which implies $f(x, y)=0$.
Hence, $\left.f\right|_{L}(x, y)=0$ for all $(x, y) \in L$ such that $|(x, y)-(0,0)|<k \sqrt{1+k^{2}}$, so $\left.f\right|_{L}$ is continuous at $(0,0)$.

6. Since A is not closed, there is some $x_{0} \in A^{\mathrm{C}}$ such that every open ball centered at x_{0} intersects A. For all $x \in A$, define $f(x)=1 /\left|x-x_{0}\right|$.
f is the composition of the function $A \rightarrow \mathbb{R}_{+}, x \mapsto\left|x-x_{0}\right|$ and the continuous function $\mathbb{R}_{+} \rightarrow \mathbb{R}, x \mapsto 1 / x$. Let $\epsilon \in \mathbb{R}_{+}$be given. Take $\delta=\epsilon$. Then for all $x, x^{\prime} \in A$, if $\left|x^{\prime}-x\right|<\delta$, then $\left|\left|x^{\prime}-x_{0}\right|-\left|x-x_{0}\right|\right| \leq\left|x^{\prime}-x\right|<\epsilon$, so the former is also continuous. Hence, f is continuous.

Let $M \in \mathbb{R}_{+}$be given. By our choice of x_{0}, the open ball $B_{1 / M}\left(x_{0}\right)$ intersects A, so there is some $x \in A$ such that $\left|x-x_{0}\right|<1 / M$ and thus $f(x)>M$. Hence, f is unbounded.

