
1. (a) Let x ∈ Rn. If |x| < 1, then x is contained in the unit open ball, which is a subset of A1.
If |x| = 1, then every open ball centered at x intersects both A1 and A1

C. If |x| > 1, then
x is contained in the open ball centered at x of radius |x| − 1, which is disjoint from A1.
Hence, the interior of A1 is { x ∈ Rn | |x| < 1 }, the exterior of A1 is { x ∈ Rn | |x| > 1 },
and the boundary of A1 is { x ∈ Rn | |x| = 1 }.

(b) Let x ∈ Rn. If |x| < 1, then x is contained in the unit open ball, which is disjoint from
A2. If |x| = 1, then every open ball centered at x intersects both A2 and A2

C. If |x| > 1,
then x is contained in the open ball centered at x of radius |x| − 1, which is disjoint from
A2. Hence, the interior of A2 is ∅, the exterior of A2 is { x ∈ Rn | |x| 6= 1 }, and the
boundary of A2 is itself.

(c) Every open ball in Rn intersects both A3 and A3
C, so the boundary of A3 is Rn and the

interior and exterior are ∅.

2. (a) A is closed, so AC is open, and there exists an open ball Br(p) = { q ∈ Rn | |q − p| < r }
such that x ∈ Br(p) and Br(p) ⊂ AC. Let d = r− |x− p|. Then d > 0, and for all y ∈ A,

|y − x| ≥ |y − p| − |x− p| (The triangle inequality)

≥ r − |x− p| (y /∈ Br(p))

= d.

(b) By (a), for every y ∈ B, there exsits dy > 0 such that |y − x| ≥ dy for all x ∈ A.
The collection of open balls

{
Bdy/2(y)

∣∣ y ∈ B } covers B, so by compactness there exist

y1, . . . , ym ∈ B (m ∈ Z+) such that
{
Bdy1/2

(y1), . . . , Bdym/2
(ym)

}
covers B. Let d =

minm
i=1{dyi

/2} ∈ R+. Let y ∈ B. Then there is some i such that y ∈ Bdyi
/2(yi). For all

x ∈ A,

|y − x| ≥ |yi − x| − |y − yi|
> dyi

− dyi
/2

= dyi
/2

≥ d.

(c) LetA = R×{ 0 }, B = { (x, 1/x) | x ∈ R+ }. A andB are closed; also, they are unbounded
and thus not compact. For every d > 0, if x > 1/d then the points (x, 0) and (x, 1/x) are
in A and B respectively, but their distance is 1/x < d.

3. If C = ∅, we can take D = ∅. Assume C 6= ∅.

Since UC is closed and C ⊂ U is compact, it follows from Q2 (b) that there is some d > 0 such
that |y − x| ≥ d for all x ∈ UC and y ∈ C, i.e. Bd(y) ⊂ U for all y ∈ C.

Since C is compact and the collection of open balls
{
Bd/2(y)

∣∣ y ∈ C } covers C, there ex-

ist y1, . . . , ym ∈ C (m ∈ Z+) such that
{
Bd/2(y1), . . . , Bd/2(ym)

}
covers C. Let D =⋃m

i=1 B̄d/2(yi). (Let B̄r(p), where p ∈ Rn and r ∈ R+, denote the closed ball centered at
p with radius r.)

• D is closed because it is a finite union of closed sets.

By compactness, |y| ≤M for all y ∈ C for some M ∈ R+. Let p ∈ D. Then there is some
i such that p ∈ B̄d/2(yi), so |p| ≤ |p− yi|+ |yi| ≤ d/2 +M . Therefore, D is bounded.

Since D is closed and bounded, it follows that D is compact.



• Let y ∈ C. Then there is some i such that y ∈ Bd/2(yi). Since Bd/2(yi) ⊂ D, it follows
that y ∈ IntD. Hence, C ⊂ IntD.

• For all i, B̄d/2(yi) ⊂ Bd(yi) ⊂ U , so D ⊂ U .

4. By Assignment 1 Q3, there is some M ∈ R+ such that |Tv| ≤M |v| for all v ∈ Rn.

Let v ∈ Rn. Let ε ∈ R+ be given. Take δ = ε/M . Then for all u ∈ Rn such that |u− v| < δ,
we have |Tu− Tv| = |T (u− v)| ≤M |u− v| < ε. Therefore, T is continuous.

5. Let ε = 1. Let δ ∈ R+. Define g : R → R, y 7→ y2 + y − δ2/4. Since g is continuous and
g(0) = −δ2/4 < 0, there is some y0 > 0 such that g(y0) < 0. Then δ2/4 − y02 > y0 > 0.
Let x0 =

√
δ2/4− y02. Then |(x0, y0)| = δ/2, x0 > 0, and y0 < δ2/4 − y02 = x0

2. Hence,
|(x0, y0)− (0, 0)| < δ but |f(x0, y0)− f(0, 0)| = 1 = ε. This implies that f is not continuous
at (0, 0).

Let L be a straight line through (0, 0).

• If L is the y-axis or the slope of L is nonpositive, then y ≤ 0 for all (x, y) ∈ L such that
x > 0, so f |L = 0 and thus f |L is continuous at (0, 0).

• Let k ∈ R+ be the slope of L. Then for (x, y) ∈ L such that |(x, y)− (0, 0)| < k
√

1 + k2,

– if x ≤ 0, then surely f(x, y) = 0;

– if x > 0, then since

√
x2 + (kx)

2
< k
√

1 + k2, we have 0 < x < k, so y = kx > x2,

which implies f(x, y) = 0.

Hence, f |L(x, y) = 0 for all (x, y) ∈ L such that |(x, y)− (0, 0)| < k
√

1 + k2, so f |L is
continuous at (0, 0).

6. Since A is not closed, there is some x0 ∈ AC such that every open ball centered at x0 intersects
A. For all x ∈ A, define f(x) = 1/ |x− x0|.

f is the composition of the function A → R+, x 7→ |x− x0| and the continuous function
R+ → R, x 7→ 1/x. Let ε ∈ R+ be given. Take δ = ε. Then for all x, x′ ∈ A, if |x′ − x| < δ, then
||x′ − x0| − |x− x0|| ≤ |x′ − x| < ε, so the former is also continuous. Hence, f is continuous.

Let M ∈ R+ be given. By our choice of x0, the open ball B1/M (x0) intersects A, so there is
some x ∈ A such that |x− x0| < 1/M and thus f(x) > M . Hence, f is unbounded.


