- 1. (a) Let $x \in \mathbb{R}^n$. If |x| < 1, then x is contained in the unit open ball, which is a subset of A_1 . If |x| = 1, then every open ball centered at x intersects both A_1 and A_1^{C} . If |x| > 1, then x is contained in the open ball centered at x of radius |x| - 1, which is disjoint from A_1 . Hence, the interior of A_1 is $\{x \in \mathbb{R}^n \mid |x| < 1\}$, the exterior of A_1 is $\{x \in \mathbb{R}^n \mid |x| > 1\}$, and the boundary of A_1 is $\{x \in \mathbb{R}^n \mid |x| = 1\}$.
 - (b) Let $x \in \mathbb{R}^n$. If |x| < 1, then x is contained in the unit open ball, which is disjoint from A_2 . If |x| = 1, then every open ball centered at x intersects both A_2 and A_2^{C} . If |x| > 1, then x is contained in the open ball centered at x of radius |x| 1, which is disjoint from A_2 . Hence, the interior of A_2 is \emptyset , the exterior of A_2 is $\{x \in \mathbb{R}^n \mid |x| \neq 1\}$, and the boundary of A_2 is itself.
 - (c) Every open ball in \mathbb{R}^n intersects both A_3 and A_3^{C} , so the boundary of A_3 is \mathbb{R}^n and the interior and exterior are \emptyset .
- 2. (a) A is closed, so A^{C} is open, and there exists an open ball $B_r(p) = \{ q \in \mathbb{R}^n \mid |q-p| < r \}$ such that $x \in B_r(p)$ and $B_r(p) \subset A^{\mathsf{C}}$. Let d = r - |x-p|. Then d > 0, and for all $y \in A$,

$$|y - x| \ge |y - p| - |x - p|$$
 (The triangle inequality)
 $\ge r - |x - p|$ ($y \notin B_r(p)$)
 $= d.$

(b) By (a), for every $y \in B$, there exists $d_y > 0$ such that $|y - x| \ge d_y$ for all $x \in A$. The collection of open balls $\{ B_{d_y/2}(y) \mid y \in B \}$ covers B, so by compactness there exist $y_1, \ldots, y_m \in B \ (m \in \mathbb{Z}_+)$ such that $\{ B_{d_{y_1/2}}(y_1), \ldots, B_{d_{y_m/2}}(y_m) \}$ covers B. Let $d = \min_{i=1}^m \{ d_{y_i}/2 \} \in \mathbb{R}_+$. Let $y \in B$. Then there is some i such that $y \in B_{d_{y_i}/2}(y_i)$. For all $x \in A$,

$$|y - x| \ge |y_i - x| - |y - y_i|$$

> $d_{y_i} - d_{y_i}/2$
= $d_{y_i}/2$
 $\ge d.$

- (c) Let $A = \mathbb{R} \times \{0\}$, $B = \{(x, 1/x) \mid x \in \mathbb{R}_+\}$. A and B are closed; also, they are unbounded and thus not compact. For every d > 0, if x > 1/d then the points (x, 0) and (x, 1/x) are in A and B respectively, but their distance is 1/x < d.
- 3. If $C = \emptyset$, we can take $D = \emptyset$. Assume $C \neq \emptyset$.

Since U^{C} is closed and $C \subset U$ is compact, it follows from Q2 (b) that there is some d > 0 such that $|y - x| \ge d$ for all $x \in U^{\mathsf{C}}$ and $y \in C$, i.e. $B_d(y) \subset U$ for all $y \in C$.

Since C is compact and the collection of open balls $\{B_{d/2}(y) \mid y \in C\}$ covers C, there exist $y_1, \ldots, y_m \in C$ $(m \in \mathbb{Z}_+)$ such that $\{B_{d/2}(y_1), \ldots, B_{d/2}(y_m)\}$ covers C. Let $D = \bigcup_{i=1}^m \bar{B}_{d/2}(y_i)$. (Let $\bar{B}_r(p)$, where $p \in \mathbb{R}^n$ and $r \in \mathbb{R}_+$, denote the closed ball centered at p with radius r.)

• D is closed because it is a finite union of closed sets.

By compactness, $|y| \leq M$ for all $y \in C$ for some $M \in \mathbb{R}_+$. Let $p \in D$. Then there is some i such that $p \in \overline{B}_{d/2}(y_i)$, so $|p| \leq |p - y_i| + |y_i| \leq d/2 + M$. Therefore, D is bounded.

Since D is closed and bounded, it follows that D is compact.

- Let $y \in C$. Then there is some *i* such that $y \in B_{d/2}(y_i)$. Since $B_{d/2}(y_i) \subset D$, it follows that $y \in \text{Int } D$. Hence, $C \subset \text{Int } D$.
- For all $i, \bar{B}_{d/2}(y_i) \subset B_d(y_i) \subset U$, so $D \subset U$.
- 4. By Assignment 1 Q3, there is some $M \in \mathbb{R}_+$ such that $|Tv| \leq M |v|$ for all $v \in \mathbb{R}^n$.

Let $v \in \mathbb{R}^n$. Let $\epsilon \in \mathbb{R}_+$ be given. Take $\delta = \epsilon/M$. Then for all $u \in \mathbb{R}^n$ such that $|u - v| < \delta$, we have $|Tu - Tv| = |T(u - v)| \le M |u - v| < \epsilon$. Therefore, T is continuous.

5. Let $\epsilon = 1$. Let $\delta \in \mathbb{R}_+$. Define $g : \mathbb{R} \to \mathbb{R}, y \mapsto y^2 + y - \delta^2/4$. Since g is continuous and $g(0) = -\delta^2/4 < 0$, there is some $y_0 > 0$ such that $g(y_0) < 0$. Then $\delta^2/4 - y_0^2 > y_0 > 0$. Let $x_0 = \sqrt{\delta^2/4 - y_0^2}$. Then $|(x_0, y_0)| = \delta/2, x_0 > 0$, and $y_0 < \delta^2/4 - y_0^2 = x_0^2$. Hence, $|(x_0, y_0) - (0, 0)| < \delta$ but $|f(x_0, y_0) - f(0, 0)| = 1 = \epsilon$. This implies that f is not continuous at (0, 0).

Let L be a straight line through (0,0).

- If L is the y-axis or the slope of L is nonpositive, then $y \leq 0$ for all $(x, y) \in L$ such that x > 0, so $f|_L = 0$ and thus $f|_L$ is continuous at (0, 0).
- Let $k \in \mathbb{R}_+$ be the slope of L. Then for $(x, y) \in L$ such that $|(x, y) (0, 0)| < k\sqrt{1 + k^2}$,
 - if $x \leq 0$, then surely f(x, y) = 0;
 - if x > 0, then since $\sqrt{x^2 + (kx)^2} < k\sqrt{1+k^2}$, we have 0 < x < k, so $y = kx > x^2$, which implies f(x, y) = 0.

Hence, $f|_L(x,y) = 0$ for all $(x,y) \in L$ such that $|(x,y) - (0,0)| < k\sqrt{1+k^2}$, so $f|_L$ is continuous at (0,0).

6. Since A is not closed, there is some $x_0 \in A^{\mathsf{C}}$ such that every open ball centered at x_0 intersects A. For all $x \in A$, define $f(x) = 1/|x - x_0|$.

f is the composition of the function $A \to \mathbb{R}_+$, $x \mapsto |x - x_0|$ and the continuous function $\mathbb{R}_+ \to \mathbb{R}$, $x \mapsto 1/x$. Let $\epsilon \in \mathbb{R}_+$ be given. Take $\delta = \epsilon$. Then for all $x, x' \in A$, if $|x' - x| < \delta$, then $||x' - x_0| - |x - x_0|| \le |x' - x| < \epsilon$, so the former is also continuous. Hence, f is continuous.

Let $M \in \mathbb{R}_+$ be given. By our choice of x_0 , the open ball $B_{1/M}(x_0)$ intersects A, so there is some $x \in A$ such that $|x - x_0| < 1/M$ and thus f(x) > M. Hence, f is unbounded.