Q1. (Spivak's 1-1)
Prove that $\|x\| \leq \sum_{i=1}^{n}\left|x_{i}\right|$.
Proof: First, claim that $\sqrt{\sum_{i=1}^{n} a_{i}} \leq \sum_{i=1}^{n} \sqrt{a_{i}}$ assuming all $a_{i} \geq 0$.
Proof of the claim by induction:
Base case: $n=1$, the claim becomes an equality,
there is nothing to prove.

$$
\begin{aligned}
n=2,0 \leq \sqrt{a_{1} a_{2}} & \Longrightarrow a_{1}+a_{2} \leq a_{1}+a_{2}+2 \sqrt{a_{1} a_{2}} \\
& \Longrightarrow \sqrt{a_{1}+a_{2}} \leq \sqrt{a_{1}}+\sqrt{a_{2}}
\end{aligned}
$$

Induction step: Assume that the claim holds for some $n \in \mathbb{N}$,
WTS it still holds for $n+1$.

$$
\begin{align*}
\sqrt{\sum_{i=1}^{n+1} a_{i}} & =\sqrt{\left(\sum_{i=1}^{n} a_{i}\right)+a_{n+1}} \\
& \leq \sqrt{\sum_{i=1}^{n} a_{i}}+\sqrt{a_{n+1}} \tag{1}\\
& \leq\left(\sum_{i=1}^{n} \sqrt{a_{i}}\right)+\sqrt{a_{n+1}} \tag{2}\\
& =\sum_{i=1}^{n+1} \sqrt{a_{i}}
\end{align*}
$$

(1) is true by base case of $n=2$,
(2) is true by the induction hypothesis.

This completes the proof of the claim.
Back to the question, $\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{\sum_{i=1}^{n} x_{i}{ }^{2}} \leq \sum_{i=1}^{n} \sqrt{x_{i}^{2}}=\sum_{i=1}^{n}\left|x_{i}\right|$.

Q2. (Spivak's 1-7)

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is norm preserving if $\|T(x)\|=\|x\|$ for all x, and inner product preserving if $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for all x, y.
(a) Prove that T is norm preserving iff it is inner product preserving.
(b) Prove that such a linear transformation is 1-1 and onto, and that T^{-1} is also norm and inner product preserving.
(a) Proof: " \Longleftarrow ": Assume T is inner product preserving.

Then take $y=x$, we have $\langle T(x), T(x)\rangle=\langle x, x\rangle$ for all x.
This means that $\|T(x)\|=\|x\|$ for all x.
Hence, T is norm preserving.
$" \Longrightarrow "$ Assume T is norm preserving.
Using the fact that T is linear, pick any x and y, we have $\|T(x)+T(y)\|=\|T(x+y)\|=\|x+y\|$

$$
\Longrightarrow\langle T(x)+T(y), T(x)+T(y)\rangle=\langle x+y, x+y\rangle
$$

$$
\Longrightarrow\langle T(x), T(x)\rangle+\langle T(y), T(y)\rangle+2\langle T(x), T(y)\rangle
$$

$$
=\langle x, x\rangle+\langle y, y\rangle+2\langle x, y\rangle \quad \text { by F.O.I.L rule }
$$

$$
\Longrightarrow\langle T(x), T(y)\rangle=\langle x, y\rangle, \quad \text { since }\|T(x)\|=\|x\| \forall x
$$

Hence, T is inner product preserving.
(b) Proof: 1-1: Take $T(x)=T(y)$. Then WTS $x=y$.

$$
\begin{aligned}
T(x)=T(y) & \Longrightarrow T(x-y)=0 \\
& \Longrightarrow\|T(x-y)\|=\|x-y\|=0 \\
& \Longrightarrow x-y=0 \Longrightarrow x=y
\end{aligned}
$$

onto: T is $1-1$, then $\operatorname{null}(T)=\{0\}$.
So by rank-nullity theorem:

$$
\begin{aligned}
& \operatorname{dim}(\operatorname{range}(T)) \\
= & \operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}(\operatorname{null}(T)) \\
= & \operatorname{dim}(\text { Domain })=\operatorname{dim}(\text { Codomain })
\end{aligned}
$$

This means that T is onto.
$T^{-1}: T$ is 1-1 and onto, so T^{-1} is well-defined.
Given $T^{-1}(x)$, we have $\left\|T\left(T^{-1}(x)\right)\right\|=\left\|T^{-1}(x)\right\|=\|x\|$.
This shows the inverse is norm preserving.
Then it is also inner product preserving by (a).

Q3. (Spivak's 1-10)
If $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation, show that there is a number M such that $\|T(h)\| \leq M\|h\|$ for all $h \in \mathbb{R}^{m}$.
Proof: Write $M_{T}=\left(\begin{array}{ccc}a_{1,1} & \ldots \ldots & a_{1, m} \\ \vdots & & \\ a_{n, 1} & \ldots \ldots & a_{n, m}\end{array}\right)$, and $h=\left(h_{1}, \ldots, h_{m}\right)$.
Then, $T(h)=\left(b_{1}, \ldots, b_{n}\right)$, where $b_{i}=\sum_{j=1}^{m} a_{i, j} h_{j}$.
Let $M=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i, j}{ }^{2}}$
Then $\|T(h)\|^{2}=\sum_{i=1}^{n} b_{i}{ }^{2}$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{m} a_{i, j} h_{j}\right)^{2} \\
& \leq \sum_{i=1}^{n}\left(\sum_{j=1}^{m} a_{i, j}^{2} \cdot \sum_{j=1}^{m} h_{j}^{2}\right) \\
& =\sum_{j=1}^{m} h_{j}^{2} \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i, j}^{2} \\
& =M^{2}\|h\|^{2}
\end{aligned}
$$

\star is true because of Theorem 1-1 (2) (Spivak, Page 2):

$$
\left|\sum_{i=1}^{n} x_{i} \cdot y_{i}\right| \leq\|x\| \cdot\|y\|
$$

which can be written as $\left(\sum_{i=1}^{n} x_{i} \cdot y_{i}\right)^{2} \leq \sum_{i=1}^{n} x_{i}{ }^{2} \cdot \sum_{i=1}^{n} y_{i}{ }^{2}$

Q3. (Spivak's 1-10) (Alterantive Solution)
If $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation, show that there is a number M such that $\|T(h)\| \leq M\|h\|$ for all $h \in \mathbb{R}^{m}$.
Proof: Write $M_{T}=\left(\begin{array}{ccc}a_{1,1} & \ldots \ldots & a_{1, m} \\ \vdots & & \\ a_{n, 1} & \ldots \ldots & a_{n, m}\end{array}\right)$, and $h=\left(h_{1}, \ldots, h_{m}\right)$.
Then, $T(h)=\left(b_{1}, \ldots, b_{n}\right)$, where $b_{i}=\sum_{j=1}^{m} a_{i, j} h_{j}$.
Let $L=\max \left\{\left|a_{i, j}\right|\right\}$ for all i, j.

$$
\begin{align*}
\text { Then }\left|\mid T(h) \|^{2}\right. & \leq\left(\sum_{i=1}^{n}\left|b_{i}\right|\right)^{2} \quad \text { by Triangle Inequality } \tag{1}\\
& =\left(\sum_{i=1}^{n}\left|\sum_{j=1}^{m} a_{i, j} h_{j}\right|\right)^{2} \\
& \leq\left(\sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i, j} h_{j}\right|\right)^{2} \quad \\
& \leq\left(\sum_{i=1}^{n} \sum_{j=1}^{m} L\left|h_{j}\right|\right)^{2} \\
& =\left(n L \sum_{j=1}^{m}\left|h_{j}\right|\right)^{2} \\
& =n^{2} L^{2}\left(\sum_{j=1}^{m}\left|h_{j}\right|\right)^{2} \\
& \leq n^{3} L^{2} \sum_{j=1}^{m}\left|h_{j}\right|^{2} \tag{2}\\
& =n^{3} L^{2}\|h\|^{2}
\end{align*}
$$

(1) is true because of Question 1, $\|x\| \leq \sum_{i=1}^{n}\left|x_{i}\right|$.
(2) is true because of $\left|\sum_{i=1}^{n} x_{i} \cdot y_{i}\right| \leq\|x\| \cdot\|y\|$
which is equivalent to $\left(\sum_{i=1}^{n} x_{i} \cdot y_{i}\right)^{2} \leq \sum_{i=1}^{n} x_{i}{ }^{2} \cdot \sum_{i=1}^{n} y_{i}{ }^{2}$
which is equivalent to $\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)^{2} \leq \sum_{i=1}^{n}\left|x_{i}\right|^{2} \cdot n$

Q4. (Spivak's 1-12)

Let $\left(\mathbb{R}^{n}\right)^{*}$ denote the dual space of the vector space \mathbb{R}^{n}. If $x \in \mathbb{R}^{n}$, define $\varphi_{x} \in\left(\mathbb{R}^{n}\right)^{*}$ by $\varphi_{x}(y)=\langle x, y\rangle$. Define $T: \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{n}\right)^{*}$ by $T(x)=\varphi_{x}$. Show that T is a 1-1 linear transformation and conclude that every $\varphi \in\left(\mathbb{R}^{n}\right)^{*}$ is φ_{x} for a unique $x \in \mathbb{R}^{n}$.

Proof: T is a linear transformation:
(i): Given $x, y, z \in \mathbb{R}^{n}$,

$$
\varphi_{x+y}(z)=\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle=\varphi_{x}(z)+\varphi_{y}(z)
$$

This is true for all $z \in \mathbb{R}^{n}$.
So $\varphi_{x+y}=\varphi_{x}+\varphi_{y}$, which means $T(x+y)=T(x)+T(y)$.
(ii): Given $x, y \in \mathbb{R}^{n}, a \in \mathbb{R}$,

$$
\varphi_{a x}(y)=\langle a x, y\rangle=a\langle x, y\rangle=a \cdot \varphi_{x}(y)
$$

This is true for all $y \in \mathbb{R}^{n}$.
So $\varphi_{a x}=a \varphi_{x}$, which means $T(a x)=a T(x)$.
(i) $+($ ii $) \Longrightarrow T$ is a linear transformation.

T is 1-1:

We will prove T is 1-1 by proving $\operatorname{null}(T)=\{0\}$.
Suppose $x \in \mathbb{R}^{n}$ and $T(x)=\varphi_{x}=0$.
Then $\varphi_{x}(y)=0$ for all $y \in \mathbb{R}^{n}$
Take $y=x$, we have $\varphi_{x}(x)=\langle x, x\rangle=\|x\|^{2}=0$
This means that $x=0$, hence $\operatorname{null}(T)=\{0\}$.
Every $\varphi \in\left(\mathbb{R}^{n}\right)^{*}$ is φ_{x} for a unique $x \in \mathbb{R}^{n}$:
This is equivalent to show T is bijection,
So we need to show T is onto i.e. $\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}\left(\left(\mathbb{R}^{n}\right)^{*}\right)$.
By rank-nullity theorem and $\operatorname{dim}\left(\left(\mathbb{R}^{n}\right)^{*}\right)=\operatorname{dim}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\operatorname{dim}(\operatorname{range}(T)) & =\operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}(\operatorname{null}(T)) \\
& =\operatorname{dim}\left(\mathbb{R}^{n}\right)=\operatorname{dim}\left(\left(\mathbb{R}^{n}\right)^{*}\right)
\end{aligned}
$$

Q5. (Spivak's 1-13)
If $x, y \in \mathbb{R}^{n}$, then x and y are called perpendicular if $\langle x, y\rangle=0$. If x and y are perpendicular, show that $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.

Proof: x and y are called perpendicular $\Longrightarrow\langle x, y\rangle=0$

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y, x+y\rangle \\
& =\langle x, x\rangle+\langle y, y\rangle+2\langle x, y\rangle, \text { by F.O.I.L rule } \\
& =\|x\|^{2}+\|y\|^{2}
\end{aligned}
$$

Q6. (Spivak's 1-18)

If $A \subseteq[0,1]$ contains all the rational numbers in $(0,1)$ and is the union of open intervals $\left(a_{i}, b_{i}\right)$, show that the boundary of A is $[0,1] \backslash A$.

Proof: We will show $\operatorname{bd}(A) \subseteq[0,1] \backslash A$ and $[0,1] \backslash A \subseteq \operatorname{bd}(A)$.
(1): Pick $p \in \operatorname{bd}(A)$.

So any open neighbourhood of p contains a point not in A.
Then $A=\bigcup\left(a_{i}, b_{i}\right) \Longrightarrow A$ is open $\Longrightarrow p \notin A$.
And if $p \notin[0,1]$, then there exists an open neighbourhood,

$$
U_{p} \subseteq \mathbb{R} \backslash[0,1]
$$

$U_{p} \cap A=\varnothing$. This contradicts the definition of boundary.
Hence, $p \in[0,1]$.
$p \in[0,1]$ and $p \notin A \Longrightarrow p \in[0,1] \backslash A$
This means $\operatorname{bd}(A) \subseteq[0,1] \backslash A$.
(2): Pick $p \in(0,1) \backslash A$ and any open neighbourhood U_{p} of p.
$p \in(0,1) \Longrightarrow U_{p} \cap(0,1) \neq \varnothing$, where the LHS is a union of two open sets, hence itself is open.
\Longrightarrow there exists a rational number $a \in U_{p} \cap(0,1)$
since \mathbb{Q} is dense.
a is rational and is in $(0,1) \Longrightarrow a \in A$.
So $a \in U_{p} \cap A \neq \varnothing$, and $p \in U_{p} \cap(\mathbb{R} \backslash A) \neq \varnothing$.
Hence, $p \in \operatorname{bd}(A)$.
This means $(0,1) \backslash A \subseteq \operatorname{bd}(A)$.
And clearly $\{0,1\} \subseteq \operatorname{bd}(A)$ since both have open neighbourhoods
that have a point in A (a rational larger than 0 or smaller than
1) and a point not in A (any point larger than 1 or smaller than 0).

So we can further have $[0,1] \backslash A \subseteq \operatorname{bd}(A)$.
$(1)+(2) \Longrightarrow[0,1] \backslash A=\operatorname{bd}(A)$

Q7. (Spivak's 1-19)
If A is closed set that contains every rational number in $[0,1]$, show that $[0,1] \subseteq A$.

Proof: Pick any point $p \in(0,1)$ and any open neighbourhood U_{p} of p .
We will prove $p \in A$ by contradiction. Assume $p \notin A$.
$p \in(0,1) \Longrightarrow U_{p} \cap(0,1) \neq \varnothing$, where the LHS is a union of two open sets, hence itself is open.
\Longrightarrow there exists a rational number $a \in U_{p} \cap(0,1)$
since \mathbb{Q} is dense.
a is rational and is in $(0,1) \Longrightarrow a \in A$.
So $a \in U_{p} \cap A \neq \varnothing$
$p \notin A \Longrightarrow p \in \mathbb{R} \backslash A$, which is an open set.
This is a contradiction, since any open neighbourhood of p contains

$$
\text { a point in } A \text {, i.e. not in } \mathbb{R} \backslash A \text {. }
$$

Hence, $p \in A$. So $(0,1) \subseteq A$.
And clearly $\{0,1\} \subseteq A$ since they are rational numbers in $[0,1]$.
So we can further have $[0,1] \subseteq A$.

