
Q1. (Spivak’s 1-1)

Prove that ||x|| ≤
n∑

i=1

|xi|.

Proof: First, claim that

√√√√ n∑
i=1

ai ≤
n∑

i=1

√
ai assuming all ai ≥ 0.

Proof of the claim by induction:

Base case: n = 1, the claim becomes an equality,

there is nothing to prove.

n = 2, 0 ≤ √
a1a2 =⇒ a1 + a2 ≤ a1 + a2 + 2

√
a1a2

=⇒
√
a1 + a2 ≤ √

a1 +
√
a2

Induction step: Assume that the claim holds for some n ∈ N,

WTS it still holds for n+ 1.√√√√n+1∑
i=1

ai =

√√√√( n∑
i=1

ai

)
+ an+1

≤

√√√√ n∑
i=1

ai +
√
an+1 (1)

≤
( n∑

i=1

√
ai

)
+
√
an+1 (2)

=

n+1∑
i=1

√
ai

(1) is true by base case of n = 2,

(2) is true by the induction hypothesis.

This completes the proof of the claim.

Back to the question, ||x|| =
√

⟨x, x⟩ =

√√√√ n∑
i=1

xi
2 ≤

n∑
i=1

√
xi

2 =

n∑
i=1

|xi|.

□
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Q2. (Spivak’s 1-7)

A linear transformation T : Rn → Rn is norm preserving if ||T (x)|| = ||x||

for all x, and inner product preserving if ⟨T (x), T (y)⟩ = ⟨x, y⟩ for all x, y.

(a) Prove that T is norm preserving iff it is inner product preserving.

(b) Prove that such a linear transformation is 1-1 and onto, and that T−1 is

also norm and inner product preserving.

(a) Proof: “⇐=”: Assume T is inner product preserving.

Then take y = x, we have ⟨T (x), T (x)⟩ = ⟨x, x⟩ for all x.

This means that ||T (x)|| = ||x|| for all x.

Hence, T is norm preserving.

“=⇒”: Assume T is norm preserving.

Using the fact that T is linear, pick any x and y,

we have ||T (x) + T (y)|| = ||T (x+ y)|| = ||x+ y||

=⇒ ⟨T (x) + T (y), T (x) + T (y)⟩ = ⟨x+ y, x+ y⟩

=⇒ ⟨T (x), T (x)⟩+ ⟨T (y), T (y)⟩+ 2⟨T (x), T (y)⟩

= ⟨x, x⟩+ ⟨y, y⟩+ 2⟨x, y⟩ by F.O.I.L rule

=⇒ ⟨T (x), T (y)⟩ = ⟨x, y⟩, since ||T (x)|| = ||x|| ∀x

Hence, T is inner product preserving.

□
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(b) Proof: 1-1: Take T (x) = T (y). Then WTS x = y.

T (x) = T (y) =⇒ T (x− y) = 0

=⇒ ||T (x− y)|| = ||x− y|| = 0

=⇒ x− y = 0 =⇒ x = y

onto: T is 1-1, then null(T ) = {0}.

So by rank-nullity theorem:

dim(range(T ))

= dim(range(T )) + dim(null(T ))

= dim(Domain) = dim(Codomain)

This means that T is onto.

T−1: T is 1-1 and onto, so T−1 is well-defined.

Given T−1(x), we have ||T (T−1(x))|| = ||T−1(x)|| = ||x||.

This shows the inverse is norm preserving.

Then it is also inner product preserving by (a).

□
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Q3. (Spivak’s 1-10)

If T : Rm → Rn is a linear transformation, show that there is a number M

such that ||T (h)|| ≤ M ||h|| for all h ∈ Rm.

Proof: Write MT =


a1,1 . . . . . . a1,m

...

an,1 . . . . . . an,m

, and h = (h1, . . . , hm).

Then, T (h) = (b1, . . . , bn), where bi =

m∑
j=1

ai,jhj .

Let M =

√√√√ n∑
i=1

m∑
j=1

ai,j
2

Then||T (h)||2 =

n∑
i=1

bi
2

=

n∑
i=1

( m∑
j=1

ai,jhj

)2

≤
n∑

i=1

( m∑
j=1

ai,j
2 ·

m∑
j=1

hj
2
)

⋆

=

m∑
j=1

hj
2 ·

n∑
i=1

m∑
j=1

ai,j
2

= M2||h||2

⋆ is true because of Theorem 1-1 (2) (Spivak, Page 2):∣∣∣ n∑
i=1

xi · yi
∣∣∣ ≤ ||x|| · ||y||,

which can be written as
( n∑

i=1

xi · yi
)2

≤
n∑

i=1

xi
2 ·

n∑
i=1

yi
2

□
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Q3. (Spivak’s 1-10)

If T : Rm → Rn is a linear transformation, show that there is a number M

such that ||T (h)|| ≤ M ||h|| for all h ∈ Rm.

Proof: Write MT =


a1,1 . . . . . . a1,m

...

an,1 . . . . . . an,m

, and h = (h1, . . . , hm).

Then, T (h) = (b1, . . . , bn), where bi =

m∑
j=1

ai,jhj .

Let L = max{|ai,j |} for all i, j.

Then||T (h)||2 ≤
( n∑

i=1

|bi|
)2

(1)

=
( n∑

i=1

∣∣∣ m∑
j=1

ai,jhj

∣∣∣)2

≤
( n∑

i=1

m∑
j=1

∣∣∣ai,jhj

∣∣∣)2

by Triangle Inequality

≤
( n∑

i=1

m∑
j=1

L
∣∣∣hj

∣∣∣)2

=
(
nL

m∑
j=1

∣∣∣hj

∣∣∣)2

= n2L2
( m∑

j=1

∣∣∣hj

∣∣∣)2

≤ n3L2
m∑
j=1

|hj |2 (2)

= n3L2||h||2

(1) is true because of Question 1, ||x|| ≤
n∑

i=1

|xi|.

(2) is true because of
∣∣∣ n∑
i=1

xi · yi
∣∣∣ ≤ ||x|| · ||y||

which is equivalent to
( n∑

i=1

xi · yi
)2

≤
n∑

i=1

xi
2 ·

n∑
i=1

yi
2

which is equivalent to
( n∑

i=1

|xi|
)2

≤
n∑

i=1

|xi|2 · n

□
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Q4. (Spivak’s 1-12)

Let (Rn)∗ denote the dual space of the vector space Rn. If x ∈ Rn, define

φx ∈ (Rn)∗ by φx(y) = ⟨x, y⟩. Define T : Rn → (Rn)∗ by T (x) = φx. Show

that T is a 1-1 linear transformation and conclude that every φ ∈ (Rn)∗ is φx

for a unique x ∈ Rn.

Proof: T is a linear transformation:

(i): Given x, y, z ∈ Rn,

φx+y(z) = ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩ = φx(z) + φy(z)

This is true for all z ∈ Rn.

So φx+y = φx + φy, which means T (x+ y) = T (x) + T (y).

(ii): Given x, y ∈ Rn, a ∈ R,

φax(y) = ⟨ax, y⟩ = a⟨x, y⟩ = a · φx(y)

This is true for all y ∈ Rn.

So φax = aφx, which means T (ax) = aT (x).

(i) + (ii) =⇒ T is a linear transformation.

T is 1-1:

We will prove T is 1-1 by proving null(T ) = {0}.

Suppose x ∈ Rn and T (x) = φx = 0.

Then φx(y) = 0 for all y ∈ Rn

Take y = x, we have φx(x) = ⟨x, x⟩ = ||x||2 = 0

This means that x = 0, hence null(T ) = {0}.

Every φ ∈ (Rn)∗ is φx for a unique x ∈ Rn:

This is equivalent to show T is bijection,

So we need to show T is onto i.e. dim(range(T )) = dim((Rn)∗).

By rank-nullity theorem and dim((Rn)∗) = dim(Rn),

dim(range(T )) = dim(range(T )) + dim(null(T ))

= dim(Rn) = dim((Rn)∗). □
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Q5. (Spivak’s 1-13)

If x, y ∈ Rn, then x and y are called perpendicular if ⟨x, y⟩ = 0. If x and y

are perpendicular, show that ||x+ y||2 = ||x||2 + ||y||2.

Proof: x and y are called perpendicular =⇒ ⟨x, y⟩ = 0

||x+ y||2 = ⟨x+ y, x+ y⟩

= ⟨x, x⟩+ ⟨y, y⟩+ 2⟨x, y⟩, by F.O.I.L rule

= ||x||2 + ||y||2

□
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Q6. (Spivak’s 1-18)

If A ⊆ [0, 1] contains all the rational numbers in (0, 1) and is the union of

open intervals (ai, bi), show that the boundary of A is [0, 1] \A.

Proof: We will show bd(A) ⊆ [0, 1] \A and [0, 1] \A ⊆ bd(A).

(1): Pick p ∈ bd(A).

So any open neighbourhood of p contains a point not in A.

Then A =
⋃
(ai, bi) =⇒ A is open =⇒ p /∈ A.

And if p /∈ [0, 1], then there exists an open neighbourhood,

Up ⊆ R \ [0, 1].

Up ∩A = ∅. This contradicts the definition of boundary.

Hence, p ∈ [0, 1].

p ∈ [0, 1] and p /∈ A =⇒ p ∈ [0, 1] \A

This means bd(A) ⊆ [0, 1] \A.

(2): Pick p ∈ (0, 1) \A and any open neighbourhood Up of p.

p ∈ (0, 1) =⇒ Up∩(0, 1) ̸= ∅, where the LHS is a union of two open sets, hence itself is open.

=⇒ there exists a rational number a ∈ Up ∩ (0, 1)

since Q is dense.

a is rational and is in (0, 1) =⇒ a ∈ A.

So a ∈ Up ∩A ̸= ∅, and p ∈ Up ∩ (R \A) ̸= ∅.

Hence, p ∈ bd(A).

This means (0, 1) \A ⊆ bd(A).

And clearly {0, 1} ⊆ bd(A) since both have open neighbourhoods

that have a point in A (a rational larger than 0 or smaller than

1) and a point not in A (any point larger than 1 or smaller

than 0).

So we can further have [0, 1] \A ⊆ bd(A).

(1) + (2) =⇒ [0, 1] \A = bd(A) □
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Q7. (Spivak’s 1-19)

If A is closed set that contains every rational number in [0, 1], show that

[0, 1] ⊆ A.

Proof: Pick any point p ∈ (0, 1) and any open neighbourhood Up of p.

We will prove p ∈ A by contradiction. Assume p /∈ A.

p ∈ (0, 1) =⇒ Up∩(0, 1) ̸= ∅, where the LHS is a union of two open sets, hence itself is open.

=⇒ there exists a rational number a ∈ Up ∩ (0, 1)

since Q is dense.

a is rational and is in (0, 1) =⇒ a ∈ A.

So a ∈ Up ∩A ̸= ∅

p /∈ A =⇒ p ∈ R \A, which is an open set.

This is a contradiction, since any open neighbourhood of p contains

a point in A, i.e. not in R \A.

Hence, p ∈ A. So (0, 1) ⊆ A.

And clearly {0, 1} ⊆ A since they are rational numbers in [0, 1].

So we can further have [0, 1] ⊆ A. □
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