if $\pi=\frac{a}{b}$, conside $n \operatorname{longe}$

$$
0<\underbrace{\int_{0}^{\frac{\pi}{2}} \frac{x^{n}(a-b x)^{n}}{n!} \underbrace{\sin x}_{\frac{n}{2}} d x<1}_{i=\frac{d v}{d v}} \underbrace{n}_{\frac{n}{2}}
$$

$$
\downarrow \downarrow \downarrow \text { light }
$$

MAT257 Analysis II on April 12, 2021: the Maxwell equations. Last class of the year! Read Along: These notes! No Per tutorial today!

Our Final Assessment will take place on Crowdmark (as the Term Tests) on Tuesday April 20 at 9AM. A detailed pre-exam office hours schedule will be sent later today or tomorrow. A bit later I will post some "reject questions".

The material: *everything*, with a small bias in favour of the later stuff.
How to study? First, ***understand***. Only after, solve problems.

Yesterday I saw horses of more than one colour!

Dror Bar-Natan: Classes: 2020-21: 2021-257 Analysis II:

A Bit on Maxwell's Equations

There's also a handout
at http://drorbn.net/
2021-257/ap/Maxwell.pdf

Exercise. Use the Lorentz metric to fix the sign errors.
Exercise. Use pullbacks along Lorentz transformations to figure out how E and B (and j aud ρ) appear to moving observers.

Maxwell's equations
I. $\boldsymbol{\nabla} \cdot \boldsymbol{E}=\frac{\rho}{\epsilon_{0}}$
(Flux of E through a closed surface $)=($ Charge inside $) / \epsilon_{0}$
II. $\boldsymbol{\nabla} \times E=-\frac{\partial B}{\partial t}$
(Line integral of E around a loop) $=-\frac{d}{d t}$ (Flux of B through the loop)
III. $\boldsymbol{V} \cdot \boldsymbol{B}=0$
(Flux of \boldsymbol{B} through a closed surface) $=0$
IV. $c^{2} \boldsymbol{\nabla} \times \boldsymbol{B}=\frac{\boldsymbol{j}}{\epsilon_{0}}+\frac{\partial \boldsymbol{E}}{\partial t} \quad c^{2}$ (Integralof \boldsymbol{B} around a loop) $=($ Current through the loop $) / \epsilon_{0}$

$$
\left\{\left[\begin{array}{c}
\text { Conservation of charge } \\
\nabla \cdot j=-\frac{\partial \rho}{\partial t}
\end{array}\right.\right.
$$

Force law

$$
F=q(E+v \times B)
$$

Law of motion

$$
\begin{aligned}
& \qquad \frac{d}{d t}(p)=F, \\
& \text { Gravitation } \\
& \qquad F=-G \frac{m_{1} m_{2}}{r^{2}} e_{r}
\end{aligned}
$$

The Feynman Lectures on Physics vol. II, page 18-2

Prerequisites.

- Poincaré's Lemma, which says that on \mathbb{R}^{n}, every closed form is exact. That is, if $d \omega=0$, then there exists η with $d \eta=\omega$.
- Integration by parts: $\int_{\mathbb{R}^{n}} \omega \wedge d \eta=-(-1)^{\operatorname{deg} \omega} \int_{\mathbb{R}^{n}}(d \omega) \wedge \eta$ for compactly supported forms.
- The Hodge star operator \star which satisfies $\omega \wedge \star \eta=\langle\omega, \eta\rangle d x_{1} \cdots d x_{n}$ whenever ω and η are of the same degree.
- The simplesest least action principle: the extremes of $q \mapsto S(q)=\int_{a}^{b}\left(\frac{1}{2} m \dot{q}^{2}(t)-V(q(t))\right) d t$ occur when $m \ddot{q}=-V^{\prime}(q(t))$. That is, when $F=m a$.

Prerequisite 1.

Poincaré's Lemma, which says that on \mathbb{R}^{n}, every closed form is exact. That is, if $d \omega=0$, then there exists η with $d \eta=\omega$.

Prerequisite 2.

$$
\begin{aligned}
& \text { 2. } \quad \int F^{\prime} g=-\int F \mathcal{} \pm \text { bndry } \begin{array}{l}
\text { toms } \\
d(w \cap \eta)=(d w h \eta \pm w \wedge d \eta
\end{array}
\end{aligned}
$$

Integration by parts: $\int_{\mathbb{R}^{n}} \omega \wedge d \eta=-(-1)^{\operatorname{deg} \omega} \int_{\mathbb{R}^{n}}(d \omega) \wedge \eta$ for compactly supported forms.

$$
D=\int_{\partial B} w \wedge \eta=\int_{\mathbb{R}^{n}} d(w \wedge \eta)=\int_{\mathbb{R}^{n}} d w \wedge \eta \pm \int_{\mathbb{R}^{n}} w \wedge d \eta
$$

Prerequisite 3.

$d x \leftrightarrow d y^{\wedge} d z$
$d y \leftrightarrow d z \wedge d x$

The Hodge star operator \star which satisfies $\omega \wedge \star \eta=\underbrace{\langle\omega, \eta\rangle} d x_{1} \cdots d x_{n}$ whenever ω and η are of the same degree.

$$
\begin{align*}
& W \cap(* w)=|w|^{2} d x_{1} \ldots d x_{n} \tag{i}\\
& R_{t, x}^{4}, y, z \\
& *(\Delta t \cap d x)= \pm d y \wedge d z
\end{align*}
$$

$$
\text { stat from ON } v_{i}
$$

con site to June basis

$$
\left\langle\varphi_{I}, \varphi_{J}\right\rangle=\delta_{I J}
$$

his is seep of tho on basis

Prerequisite 4.

The simplesest least action principle: the extremes of $q \mapsto S(q)=\int_{\ddot{z}}^{t}\left(\frac{1}{2} m \dot{q}^{2}(t)-V(q(t))\right) d t$ occur when $m \ddot{q}=-V^{\prime}(q(t))$. That is, when $F=m a$.

Endor-Lagan

The Action Principle. FG<E\&M

$$
A \in \Omega_{C_{0 o r n c t}^{\prime}}^{1}\left(\mathbb{R}^{4}\right)
$$

The 4-Vector Potential is a compactly supported 1-form A on \mathbb{R}^{4} which extremizes the action

$$
S_{J}(A):=\int_{\mathbb{R}^{4}} \frac{1}{2}|d A|^{2} d t d x d y d z+J \wedge A
$$

where the 3 -form $\underbrace{J \text { is the charge-current. }} \quad J \in \Omega_{C}^{3}\left(\mathbb{R}^{4}\right)$

$$
J=\rho d x d y d z-j_{x} d y d z d t-j_{y} d z d x d t
$$

$\forall B$
全

$$
\begin{aligned}
& S_{J}(A+\in B)=\int_{\mathbb{K}^{4}} \frac{1}{2}\langle\underline{A}(A \in \in B), d(A+\in B)\rangle+J \wedge(\underline{A+\in B}) \\
& =\int_{R T H} \frac{1}{2}\left\langle\Delta A,\langle A\rangle+J \wedge A+E\left(\frac{2}{2} \int\langle\langle B, d A\rangle+J \wedge B)+C X\right.\right.
\end{aligned}
$$

A is axtraml $\Leftrightarrow \forall B \quad \int\langle d B, d A\rangle+J \wedge B=0$

$$
\begin{aligned}
\Leftrightarrow O & =\int_{i \not R 1} d B \wedge(* d A)+J \wedge B=0 \\
& =\int^{\prime}+B \wedge(d * d A)-B^{\wedge} J=\int B^{\wedge}(d * \perp A-J) \\
& \Leftrightarrow d * d A-J=0 \\
& \Leftrightarrow d * d A=J
\end{aligned}
$$

Can onlyhuve sol'ns if $d J=0$

$$
d J=0 \quad d * F=J \quad d F=0
$$

The Euler-Lagrange Equations

in this case are $d \star d A=J$, meaning that there's no hope for a solution unless $d J=0$, and that we might as well (think Poincaré's Lemma!) change variables to $F:=d A$. We thus get

$$
d J=0 \quad d F=0 \quad d \star F=J
$$

These are the Maxwell equations!

Writing $F=\left(\underline{E_{x}} \underline{d x d t}+\underline{E_{y}} \underline{d y} d t+E_{z} d z d t\right)+\left(\underline{B_{x}} \underline{d y d z}+\underline{B}_{y} \underline{d z d x}+\underline{B_{z} d x d y}\right)$ and $J=\rho d x d y d z-j_{x} d y d z d t-j_{y} d z d x d t-j_{z} d x d y d t$, we find:

$d J=0 \Longrightarrow$	$\operatorname{div} j=-\frac{\partial \rho}{\partial t}$	"conservation of charge"
$d F=0 \Longrightarrow$	$\operatorname{div} B=0$	"no magnetic monopoles"
curl $E=-\frac{\partial B}{\partial t}$	that's how generators work!	
$d * F=J \Longrightarrow$	$\operatorname{div} E=-\rho$	"electrostatics"
	curl $B=j-\frac{\partial E}{\partial t}$	that's how electromagnets work!

$d J=0$
$J \in \Omega^{3} \quad d J \in \Omega^{4}$

with $J=\rho d x d y d z-j_{x} d y d z d t-j_{y} d z d x d t-j_{z} d x d y d t$.

$$
\frac{\partial p}{\partial t}+\frac{\partial j_{x}}{\partial x}+\frac{\partial j_{y}}{\partial y}+\frac{\partial j_{z}}{\partial z}=0
$$

$d F=0$

$$
\begin{aligned}
& d F=C \\
& d J=0 \quad d F=0 \quad d \star F=J
\end{aligned}
$$

$1 d t d y d z$) $d t d z d x$
with $F=\left(E_{x} d x d t+E_{y} d y d t+E_{z} d z d t\right)+\left(B_{x} d y d z+B_{y} d z d x+B_{z} d x d y\right)$ and $J=\rho d x d y d z-j_{x} d y d z d t-j_{y} d z d x d t-j_{z} d x d y d t$.

$$
\begin{array}{r}
d F=0 \Longrightarrow \quad \operatorname{div} B=0 \\
\operatorname{curl} E=-\frac{\partial B}{\partial t}
\end{array}
$$

"no magnetic monopoles"
that's how generators work!
$d \underset{\underbrace{}}{* F}=J$

$$
d J=0 \quad d F=0 \quad d \star F=J
$$

with $F=\left(E_{x} d x d t+E_{y} d y d t+E_{z} d z d t\right)+\left(B_{x} d y d z+B_{y} d z d x+B_{z} d x d y\right)$ and $J=\rho d x d y d z-j_{x} d y d z d t-j_{y} d z d x d t-j_{z} d x d y d t$.
With $\omega \wedge * \omega=|\omega|^{2} d t d x d y d z$ we have

$$
\left.\begin{array}{lll}
* d x d t=-d y d z, & * d y d t=-d z d x, & * d z d t=-d x d y, \\
* d y d z=-d x d t, & * d z d x=-d y d t, & * d x d y=-d x d t,
\end{array}\right\}<\ln / \mathrm{l}, \mathrm{l}
$$

so $* F=\left(-B_{x} d x d t-B_{y} d y d t-B_{z} d z d t\right)+\left(-E_{x} d y d z-E_{y} d z d x-E_{z} d x d y\right)$.

$$
\begin{array}{rlr}
d * F=J \Longrightarrow \quad \operatorname{div} E=-\rho & \text { "electrostatics" } \\
& \text { curl } B=j\left(-\frac{\partial E}{\partial t}\right. & \text { that's how electromagnets work! }
\end{array}
$$

Table 18-1 Classical Physics

Maxwell's equations
I. $\boldsymbol{V} \cdot \boldsymbol{E}=\frac{\rho}{\epsilon_{0}} \quad$ (Flux of E through a closed surface) $=($ Charge inside $) / \epsilon_{0}$
II. $\boldsymbol{\nabla} \times E=-\frac{\partial B}{\partial t}$
III. $\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$
IV. $c^{2} \nabla \times B=\frac{j}{\epsilon_{0}}+\frac{\partial E}{\partial t}$
c
$c^{2}($ Integralof B around a loop $)=($ Current through the loop $) / \epsilon_{0}$

$$
+\frac{\partial}{\partial t} \text { (Flux of } E \text { through the loop) }
$$

Conservation of charge
$\boldsymbol{\nabla} \cdot \boldsymbol{j}=-\frac{\partial \rho}{\partial t}$
(Line integral of E around a loop) $=-\frac{d}{d t}$ (Flux of B through the loop)
(Flux of \boldsymbol{B} through a closed surface) $=0$

Force law

$$
F=q(E+v \times B)
$$

Law of motion

$$
\frac{d}{d t}(p)=F, \quad \text { where } \quad p=\frac{m v}{\sqrt{1-v^{2} / c^{2}}} \quad \text { (Newton's law, with Einstein's modification) }
$$

Gravitation

$$
\boldsymbol{F}=-G \frac{m_{1} m_{2}}{r^{2}} \boldsymbol{e}_{r}
$$

Feynman again. But wait, in our last two equations the sign of E is wrong!

Exercise 1.

Use the Lorentz metric to fix the sign errors.

$$
\begin{array}{r}
\text { Metic shard be } x^{2}+y^{2}+z^{2}-t^{2} \\
\text { not } x^{2}+y^{2}+z^{2}+t^{2}
\end{array}
$$

Exercise 2.

Use pullbacks along Lorentz transformations to figure out how E and B (and j and ρ) appear to moving observers.

Exercise 3.

With $d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}$ use $S=m c \int_{e_{1}}^{e_{2}}(d s+e A)$ to derive Feynman's "law of motion" and "force law".

