

MAT257 Analysis II on April 12, 2021: the Maxwell equations. Last class of the year! Read Along: These notes!

No Petr tutorial today!

Our Final Assessment will take place on Crowdmark (as the Term Tests) on Tuesday April 20 at 9AM. A detailed pre-exam office hours schedule will be sent later today or tomorrow. A bit later I will post some "reject questions".

The material: *everything*, with a small bias in favour of the later stuff.

How to study? First, ***understand***. Only after, solve problems.

Dror Bar-Natan: Classes: 2020-21: 2021-257 Analysis II:

A Bit on Maxwell's Equations

There's also a handout http://drorbn.net/ 2021-257/ap/Maxwell.pdf

Dror Bay, Natary Classes: 2020, 21: 2021, 257 Analysis III

A Bit on Maxwell's Equations

Prerequisites.

- · Poincaré's Lemma, which says that on Ro, every closed form is exact. That is if $d\omega = 0$ then there exists η with $d\eta = \omega$.
- Integration by parts: $\int_{\Omega_n} \omega \wedge d\eta =$ $-(-1)^{\text{deg}\,\omega} \int_{\Omega_n} (d\omega) \wedge \eta$ for compactly supported forms.
- . The Hodge star operator * which satisfies $\omega \wedge *n = (\omega, n)dx_1 \cdots dx_n$ when-
- ever -- and n are of the same dorrer • The simplesest least action principle: the extremes of $q \mapsto$ $S(q) = \int_{0}^{q} (\frac{1}{2}m\dot{q}^{2}(t) - V(q(t))) dt$ occur when $m\tilde{a} = -V'(a(t))$. That is,
 - when F = ma.

Table 18-1 Classical Physics

Manager and America L V-E - A (Plus of E shough a closed surface) = (Charge inside)/s₀ B X X X - - # (Line integral of E around a loop) $= -\frac{d}{2}$ (Flux of E through the loop) III. V : # ~ 0 (Flor of # through a should surface) = 0

19. At 10 K - A + M. Allebertof Factors (Section Section Section) $+\frac{\partial}{\partial t}$ (Plan of Ethrough the loop)

(Plax of current through a closed surface) = $-\frac{\partial}{\partial t}$ (Charge inside) F - 45 + + × 5 $\frac{d}{dt}(p) = F$, where $p = \frac{mp}{\sqrt{1-m^2/2}}$ (Newton's law, with Electric's modification) F = -0 DD +

The Feynman Lectures on Physics vol. II, page 18-2

The Action Principle. The 4-Vector Potential is a compactly supported 1-form A on \mathbb{R}^4 which extremizes the action

$$S_J(A) := \int_{\mathbb{R}^d} \frac{1}{2} ||dA||^2 dt dx dy dz + J \wedge A$$

where the 3-form, I is the charge-current

The Euler-Lagrange Equations in this case are $d \star dA = J$, meaning that there's no hope for a solution unless dJ = 0. and that we might us well (think Poincaré's Lemma!) change variables to F := dA. We thus set

$$dJ = 0$$
 $dF = 0$ $d \star F = J$

These are the Maxwell conations! Indeed, writing F = (E, dvdt + E, dudt + E, dvdt) + (B, dvdv + B, dvdv + B, dvdv)and $J = advdudz = i \cdot dudzdt = i \cdot dzdzdt = i \cdot dzdudt$, we find

$dJ = 0 \Longrightarrow$	$\operatorname{div} j = -\frac{\partial \rho}{\partial t}$	"conservation of charge"
$dF = 0 \Longrightarrow$	$\operatorname{div} B = 0$	"no magnetic monopoles"
	$\operatorname{curl} E = -\frac{\partial B}{\partial t}$	that's how generators work!
$d*F=J \Longrightarrow$	$\operatorname{div} E = -\rho$	"electrostatics"
	$\operatorname{curl} B = j - \frac{\partial E}{\partial t}$	that's how electromagnets work!

Propeles. Use the Lecentry metric to fly the sign course

Exercise. Use millbacks along Lorentz transformations to figure out how E and B (and i and a) amount to maring observers Exercise. With $ds^2 = c^2dt^2 - dx^2 - dx^2 - dx^2 - dx^2$ use $S = mc \int_{-\infty}^{\infty} (ds + eA)$ to derive Feynman's "law of motion" and "force

Table 18-1 Classical Physics

Maxwell's equations I. $\nabla \cdot E = \frac{\rho}{\epsilon}$ (Flux of E through a closed surface) = (Charge inside)/ ϵ_0 II. $\nabla \times E = -\frac{\partial B}{\partial t}$ (Line integral of E around a loop) $= -\frac{d}{dt}$ (Flux of B through the loop) (Flux of B through a closed surface) = 0 IV. $c^2 \nabla \times B = \frac{j}{\epsilon_0} + \frac{\partial E}{\partial t}$ c^2 (Integral of B around a loop) = (Current through the loop)/ ϵ_0 $+\frac{\partial}{\partial x}$ (Flux of E through the loop) Conservation of charge $\nabla \cdot j = -\frac{\partial \rho}{\partial t}$ (Flux of current through a closed surface) $= -\frac{\partial}{\partial t}$ (Charge inside) Force law $F = q(E + v \times B)$ Law of motion $\frac{d}{dt}(p) = F$, where $p = \frac{mv}{\sqrt{1 - v^2/c^2}}$ (Newton's law, with Einstein's modification) Gravitation $F = -G \frac{m_1 m_2}{r^2} e_r$

The Feynman Lectures on Physics vol. II, page 18-2

Prerequisites.

- Poincaré's Lemma, which says that on \mathbb{R}^n , every closed form is exact. That is, if $d\omega = 0$, then there exists η with $d\eta = \omega$.
- ▶ Integration by parts: $\int_{\mathbb{R}^n} \omega \wedge d\eta = -(-1)^{\deg \omega} \int_{\mathbb{R}^n} (d\omega) \wedge \eta$ for compactly supported forms.
- ▶ The Hodge star operator \star which satisfies $\omega \wedge \star \eta = \langle \omega, \eta \rangle dx_1 \cdots dx_n$ whenever ω and η are of the same degree.
- The simplesest least action principle: the extremes of $q\mapsto S(q)=\int_a^b\left(\frac{1}{2}m\dot{q}^2(t)-V(q(t))\right)dt$ occur when $m\ddot{q}=-V'(q(t))$. That is, when F=ma.

Prerequisite 1.

Poincaré's Lemma, which says that on \mathbb{R}^n , every closed form is exact. That is, if $d\omega = 0$, then there exists η with $d\eta = \omega$.

Prerequisite 2.

$$\frac{2}{d(wnn)} = \frac{1}{dwhn} \pm \frac{1}{dwnn}$$

Integration by parts: $\int_{\mathbb{R}^n} \omega \wedge d\eta = -(-1)^{\deg \omega} \int_{\mathbb{R}^n} (d\omega) \wedge \eta$ for compactly supported forms.

3.
$$\binom{n}{k} = \binom{n}{n-k}$$

$$dx_{1} = dx_{1}$$

dx endyndz

The Hodge star operator \star which satisfies $\omega \wedge \star \eta = \langle \underline{\omega}, \eta \rangle dx_1 \cdots dx_n$ whenever ω and η are of the same degree. $W_{1}(*w) = |w|^{2} dx_{1} dx_{1}$

Start from ON. V; consider the Jude basis

 $|R_{t,x,y,z}^{4}| \times (|t| | dx) = \pm dy + dz$

Prerequisite 4.

The simplesest least action principle: the extremes of $q\mapsto S(q)=\int_{-\pi}^{\pi}(\frac{1}{2}m\dot{q}^2(t)-V(q(t)))\,dt$ occur when $m\ddot{q}=-V'(q(t))$. That is, when F=ma.

The Action Principle. For $E \ M$ $A \in \mathcal{N}(\mathbb{R}^4)$

The 4-Vector Potential is a compactly supported 1-form A on \mathbb{R}^4 which extremizes the action

$$S_{J}(A) := \int_{\mathbb{R}^{4}} \frac{1}{2} |dA|^{2} dt dx dy dz + J \wedge A$$

where the 3-form J is the charge-current. \mathcal{F}

 $\forall B$ f(x) $S(A+EB) = S_{J}(A) + E_{J} + F(a+EB)$ = F(a) + XE + CAESJ(A+EB) = (= (A+EB), d(A+EB) > + J^(A+EB) $= \int_{\mathbb{R}^d} \frac{1}{2} (JA) dA + JAA + E\left(\frac{2}{2}\right) (JB) JA + JAB + EX$

A is extraml > YB S(dB, dA) + JAB = 0

$$= \int_{\mathbb{R}^{N}} J B \wedge (*JA) + J \wedge B = 0$$

$$= \int_{\mathbb{R}^{N}} J B \wedge (J*JA) - B \wedge J = \int_{\mathbb{R}^{N}} J A - J$$

 $4 \times JA - J = 0$ $4 \times JA = J$

Can only have soll hs if J=0.

The Euler-Lagrange Equations

in this case are $d \star dA = J$, meaning that there's no hope for a solution unless dJ = 0, and that we might as well (think Poincaré's Lemma!) change variables to F := dA. We thus get

$$dJ = 0$$
 $dF = 0$ $d \star F = J$

These are the Maxwell equations!

Electric
$$dJ = 0$$
 $dF = 0$ $d \star F = d$

Writing $F = (E_x dxdt + E_y dydt + E_z dzdt) + (B_x dydz + B_y dzdx + B_z dxdy)$ and $J = \rho dxdydz - j_x dydzdt - j_y dzdxdt - j_z dxdydt$, we find:

$$dJ=0 \Longrightarrow \quad \text{div } j=-\frac{\partial \rho}{\partial t} \qquad \text{"conservation of charge"}$$

$$dF=0 \Longrightarrow \quad \text{div } B=0 \qquad \text{"no magnetic monopoles"}$$

$$\text{curl } E=-\frac{\partial B}{\partial t} \qquad \text{that's how generators work!}$$

$$d*F=J \Longrightarrow \quad \text{div } E=-\rho \qquad \text{"electrostatics"}$$

$$\text{curl } B=j-\frac{\partial E}{\partial t} \qquad \text{that's how electromagnets work!}$$

$$dJ=0$$

$$J \in \mathcal{N}$$

$$JJ \in \mathcal{N}$$

$$JJ = ($$

$$dJ = 0 \quad dF = 0 \quad d \star F = J$$

with $J = \rho dxdydz - j_x dydzdt - j_y dzdxdt - j_z dxdydt$.

$$\frac{\partial J}{\partial t} + \frac{\partial J}{\partial x} + \frac{\partial J}{\partial x} + \frac{\partial J}{\partial z} = 0$$
 "conservation of charge"

$$dJ = 0 \qquad dF = 0 \qquad d \star F = J$$
with $F = (E_x dxdt + E_y dydt + E_z dzdt) + (B_x dydz + B_y dzdx + B_z dxdy)$ and $J = \rho dxdydz - j_x dydzdt - j_y dzdxdt - j_z dxdydt$.

1 dt Ly 12

 $dF=0\Longrightarrow \qquad {
m div}\,B=0$ ${
m curl}\,E=-rac{\partial B}{\partial t}$ "no magnetic monopoles"

curl
$$E=-rac{\partial B}{\partial t}$$
 that's how generators work!

$$d * F = J$$

$$dJ = 0$$
 $dF = 0$ $d \star F = J$

with $F = (E_x dxdt + E_y dydt + E_z dzdt) + (B_x dydz + B_y dzdx + B_z dxdy)$ and $J = \rho dxdydz - j_x dydzdt - j_y dzdxdt - j_z dxdydt$.

With $\omega \wedge *\omega = |\omega|^2 dt dx dy dz$ we have

$$*dxdt = -dydz, *dydt = -dzdx, *dzdt = -dxdy, \\ *dydz = -dxdt, *dzdx = -dydt, *dxdy = -dxdt, \\$$

so $*F = (-B_x dxdt - B_y dydt - B_z dzdt) + (-E_x dydz - E_y dzdx - E_z dxdy).$

$$d*F = J \Longrightarrow$$
 $\text{div } E = -\rho$ "electrostatics" $\text{curl } B = j \left(\frac{\partial E}{\partial t} \right)$ that's how electromagnets work!

Table 18-1 Classical Physics

Maxwell's equations

I.
$$\nabla \cdot E = \frac{\rho}{\epsilon}$$
 (Flux of E through a closed surface) = (Charge inside)/ ϵ_0

II.
$$\nabla \times E = -\frac{\partial B}{\partial t}$$
 (Line integral of E around a loop) = $-\frac{d}{dt}$ (Flux of B through the loop)

III.
$$\nabla \cdot \mathbf{B} = 0$$
 (Flux of \mathbf{B} through a closed surface) = 0

IV.
$$c^2 \nabla \times B = \frac{j}{\epsilon_0} + \frac{\partial E}{\partial t} - c^2 (\text{Integral of } B \text{ around a loop}) = (\text{Current through the loop})/\epsilon_0 + \frac{\partial}{\partial t} (\text{Flux of } E \text{ through the loop})$$

$$\nabla \cdot f = -\frac{\partial \rho}{\partial t}$$
 (Flux of current through a closed surface) = $-\frac{\partial}{\partial t}$ (Charge inside)

Force law

$$F = q(E + v \times B)$$

Law of motion

$$\frac{d}{dt}(p) = F$$
, where $p = \frac{mv}{\sqrt{1 - v^2/c^2}}$ (Newton's law, with Einstein's modification)

Gravitation

vitation
$$F = -G \frac{m_1 m_2}{r^2} e_r$$

Feynman again. But wait, in our last two equations the sign of E is wrong!

Exercise 1.

Use the Lorentz metric to fix the sign errors.

Exercise 2.

Use pullbacks along Lorentz transformations to figure out how E and B (and j and ρ) appear to moving observers.

Exercise 3.

With $ds^2=c^2dt^2-dx^2-dy^2-dz^2$ use $S=mc\int_{e_1}^{e_2}(ds+eA)$ to derive Feynman's "law of motion" and "force law".