I will assume that you are familiar with all of the terms and symbols on this handout. Our first tutorials will go over everything here, just in case something is missing.

1 **Basic Set Theory**

In the following, A, B, X, Y are sets, I is an indexing set and $\{A_{\alpha} : \alpha \in I\}$ and $\{B_{\alpha} : \alpha \in I\}$ are families of sets indexed by I.

- Empty set: \emptyset , the set with no elements.
- Subset: $A \subseteq B$ means " $x \in A \implies x \in B$ "
- Union: $A \cup B \coloneqq \{x \colon x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B \coloneqq \{x \colon x \in A \text{ and } x \in B\}$
- Complement: If $A \subseteq X$, then $X \setminus A$:= $\{x: x \in X \text{ and } x \notin A\}$
- Indexed union: $\bigcup_{\alpha \in I} A_{\alpha} \coloneqq \{x \colon \exists \alpha \in I, \ x \in A_{\alpha}\}$
- Indexed intersection: $\bigcap_{\alpha \in I} A_{\alpha} \coloneqq \{x \colon \forall \alpha \in I, x \in A_{\alpha}\}$
- Cartesian product of two sets: $X \times Y$:= $\{(x, y) \colon x \in X, y \in Y\}$
- Powers of sets: Y^X is the set of all function $f: X \to Y$. $f(A \cap B) \subseteq f(A) \cap f(B)$
- The power set of $X: \mathcal{P}(X) \coloneqq \{A: A \subseteq X\} \leftrightarrow \{0,1\}^X$. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$

2 **Functions**

In the following, let X and Y be sets, and let $f: X \to Y$ be a function.

- X is the domain of f.
- Y is the target space or codomain of f.

•
$$f(X) = \{f(x) : x \in X\} \subseteq Y$$
 is the range or image of f .

- f is injective (or one-to-one, or an injection) $\forall a, b \in X, \quad f(a) = f(b) \implies a = b.$
- f is surjective (or onto, or a surjection) if its range is its entire codomain.
- f is bijective (or a bijection) if it is both injective and a surjective.
- The composition of two injective functions is again injective.
- The composition of two surjective functions is again surjective.
- The composition of two bijective functions is again bijective.
- Given a subset $B \subseteq Y$, the preimage of B is the set $f^{-1}(B) \coloneqq \{x \in X \colon f(x) \in B\}.$
- If f is an injection with range Y, then its inverse function $f^{-1}: Y \to X$ is (1) a function; and (2) bijective.

De Morgan's Laws and some Fur-3 ther Relations

The following two expressions are generalized versions of what are called De Morgan's Laws. They describe how unions and intersections interact with complementation.

•
$$X \setminus \left(\bigcup_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} (X \setminus A_{\alpha})$$

• $X \setminus \left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$

The following are elementary facts about how functions interact with operations on subsets of their domains, codomains and ranges. Throughout the following, let X and Y be sets, let $f: X \to Y$ be a function, and let $A, B \subseteq X$ and $C, D \subseteq Y$.

- $A \subseteq B$ implies $f(A) \subseteq f(B)$
- $C \subseteq D$ implies $f^{-1}(C) \subseteq f^{-1}(D)$
- $f(A \cup B) = f(A) \cup f(B)$
- $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$

- $f(A) \setminus f(B) \subseteq f(A \setminus B)$
- $f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$
- $f(X \setminus f^{-1}(Y \setminus C)) \subseteq C$
- $A \subseteq f^{-1}(f(A))$, (with equality if f is injective)
- $f(f^{-1}(C)) \subseteq C$, (with equality if f is surjective)
- $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$

Countability and Uncountability 4

We will spend some time on this in class, but I do expect these words to be familiar to you.

Definition 1. A set A is said to be countably infinite if there exists a bijection $f : \mathbb{N} \to A$. A set A is said to be countable if it is finite or countably infinite. If A is infinite but not countably infinite, A is said to be uncountable.

The following theorem gives some equivalent conditions for being countable:

Theorem 2. For an infinite set A, the following are equivalent:

- 1. A is countable.
- 2. There is an injection $f: A \to \mathbb{N}$.

3. There is a surjection $g: \mathbb{N} \to A$.

Fact: The following sets are countable:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, the set of algebraic numbers.
- Any infinite subset of a countable set.
- The Cartesian product of two countable sets (and, inductively, the Cartesian product of a finite number of countable sets).
- The union of finitely many countable sets.
- The union of a countable collection of countable sets.
- The countable union of some countable sets and some finite sets.

Fact: The following sets are uncountable:

- ℝ, ℝ \ Q (the irrational numbers), the set of non- algebraic numbers (i.e. the set of transcendental num-bers), ℝⁿ.
- Any superset of an uncountable set.
- The power set of any infinite set (countable or otherwise), e.g. \$\mathcal{P}(\mathbb{N})\$.
- The set $\mathbb{N}^{\mathbb{N}}$ of functions from \mathbb{N} to \mathbb{N} .

5 Selected Basic Facts About \mathbb{R}

First recall: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$. (For us, $0 \notin \mathbb{N}$.)

- Fact: Between any two distinct real numbers:
- There are infinitely many rational numbers.
- There are infinitely many irrational numbers.
- Fact: Here are some useful facts from calculus:
- $\bigcup_{n \in \mathbb{N}} [\frac{1}{n}, 1] = (0, 1].$ • $\bigcup_{n \in \mathbb{N}} [0, n] = [0, \infty).$

•
$$\bigcup_{n \in \mathbb{N}} [0, n] = [0, 0]$$

• $\sum_{n \in \mathbb{N}} 2^{-n} = 1.$

$$\sum_{n \in \mathbb{N}}$$

6 Acknowledgement

This document was modified from a document by Micheal Pawliuk and by Ivan Khatchatourian and used with their permission. Thanks, Micheal and Ivan!