```
oddprimes[n_] := Delete[Table[Prime[i], {i, 1, n + 1}], 1]
```

Question : For some prime integers pgreater that 2, the equation $x^{2}=$

- 1 has a solution in \mathbb{Z}_{p}. What is the rule that dictates which primes those are ?

I know that it depends on the value of p mod 4.

```
check[n_] := Module[{j, k, l, list, square, mod, pairs},
    list = Table[Mod[k2, oddprimes[n][[j]]] - oddprimes[n][[j]],
            {j, 1, n}, {k, 1, oddprimes[n][[j]]}];
    square = Table[Intersection [{-1}, list[[k]]], {k, 1, n}];
    mod = Table[Mod[oddprimes[n][[j]], 4], {j, 1, n}];
    pairs = Table[Append[square[[j]], mod[[j]]], {j, 1, n}];
    Table[Or[pairs[[k]] == {3}, pairs[[k]] == {-1, 1}], {k, 1, n}]]
check [10]
{True, True, True, True, True, True, True, True, True, True}
DiscretePlot[Timing[check[n]][[1]], {n, 1, 100}]
```


The running time of this algorithm is really bad, mostly because it uses a silly way of checking that -1 is a square.

```
modpair [i_, p_] := {Mod[i', p]== p-1,{i}}
modpairs[p_] := Table[modpair[i, p], {i, 1, p-1}]
search[p_] := Which @@ Flatten@modpairs [p]
square[p_] := If[TrueQ[search[p] == Null], "is not", "is"]
evidence[p_] := Print ["-1 ", square[p], " a square mod ", p"."]
Table[evidence[p], {p, oddprimes[10]}];
```

-1 is not a square mod 3.
-1 is a square mod 5 .
-1 is not a square mod 7.
-1 is not a square mod 11.
-1 is a square mod 13 .
-1 is a square mod 17.
-1 is not a square mod 19 .
-1 is not a square mod 23 .
-1 is a square mod 29 .
-1 is not a square mod 31.
DiscretePlot[Timing[square[n]], \{n, oddprimes [100] \}]

As an output for the demonstration in class :

```
conjecture[p_] :=
    Print ["-1 ", square[p], " a square mod " , p, ", which is ", Mod[p, 4], " mod 4." ]
Table[conjecture[p], {p, oddprimes[10]}];
-1 is not a square mod 3 , which is \(3 \bmod 4\).
-1 is a square mod 5 , which is \(1 \bmod 4\).
-1 is not a square mod 7 , which is \(3 \bmod 4\).
-1 is not a square mod 11 , which is \(3 \bmod 4\).
-1 is a square mod 13, which is \(1 \bmod 4\).
-1 is a square mod 17, which is \(1 \bmod 4\).
-1 is not a square mod 19 , which is \(3 \bmod 4\).
-1 is not a square mod 23 , which is \(3 \bmod 4\).
-1 is a square mod 29, which is \(1 \bmod 4\).
-1 is not a square mod 31 , which is \(3 \bmod 4\).
```

