The 8-5-3 Milk Jug Problem

Charlene Chu - November 23, 2017

Problem

The 8 liter jar is full of milk and the 5 liter and the 3 liter jars are empty. He has no way to measure besides using these jars.

Challenge. Draw the state graph of this problem (no spilling allowed!).

Solution

Assuming that there is no spilling allowed, here are all of the possible moves we can make. A move $\{x, y\}$ means we are pouring milk from jug x to y, where jug 1, 2, 3 represents the 8-, 5-, 3-litre jug, respectively.

```
moves = Join[Subsets[{1, 2, 3}, {2, 2}], Reverse[Subsets[{1, 2, 3}, {2, 2}], 2]] \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 1\}, \{3, 1\}, \{3, 2\}\}
```

Here are all of the possible states. A state $\{a, b, c\}$ means that there are a, b, c litres of milk in the 8-, 5-, 3-litre jug, respectively.

```
states =
Solve[{a+b+c == 8, 0 ≤ a ≤ 8, 0 ≤ b ≤ 5, 0 ≤ c ≤ 3}, {a, b, c}, Integers] /. (_ → \alpha_{-}) \Rightarrow \alpha;
states // Short
{{0, 5, 3}, {1, 4, 3}, {1, 5, 2}, {2, 3, 3}, {2, 4, 2},
{2, 5, 1}, \ll13», {6, 1, 1}, {6, 2, 0}, {7, 0, 1}, {7, 1, 0}, {8, 0, 0}}
```

Given a move and the current state, *f*[move, state] returns the state after making a move.

```
f[move_, state_] := Module[{x, y, max = {8, 5, 3}, m, \alpha, \beta, temp},
  x = move[[1]];
  y = move[[2]];
  m = max[[y]];
  \alpha = state[[x]];
  \beta = state[[y]];
  temp = state;
  If[\alpha \neq 0 \land \beta \neq m, If[\alpha + \beta \ge m,
      {temp[[x]], temp[[y]]} = {\alpha + \beta - m, m}, {temp[[x]], temp[[y]]} = {0, \alpha + \beta}, temp = Null];
  temp
];
```

We can create an edge from one state to another when we make a move.

createEdge[move_, state_] := state → f[move, state];

Here are all of the possible edges.

 $\{ \{1, 4, 3\} \rightarrow \{0, 5, 3\}, \{2, 3, 3\} \rightarrow \{0, 5, 3\}, \\ \{2, 4, 2\} \rightarrow \{1, 5, 2\}, \ll 101 \gg, \{6, 1, 1\} \rightarrow \{6, 2, 0\}, \{7, 0, 1\} \rightarrow \{7, 1, 0\} \}$

Here is the graph with all of the possible states.

However, we are only interested in measuring 4 litres starting from the state {8, 0, 0}. So, consider the start state and the end states.

```
start = {{8, 0, 0}}
{{8, 0, 0}}
end = Select[states, MemberQ[#, 4] &]
{{1, 4, 3}, {2, 4, 2}, {3, 4, 1}, {4, 1, 3}, {4, 2, 2}, {4, 3, 1}, {4, 4, 0}}
```

Note that some of the end states cannot be achieved when we start at {8, 0, 0}. We can use FindShortestPath to determine which states we need and which states we don't.

```
paths = Join @@ Table[FindShortestPath[graph, s, e], {s, start}, {e, end}];
paths // Short
```

```
 \{\{\{8, 0, 0\}, \{3, 5, 0\}, \{3, 2, 3\}, \{6, 2, 0\}, \{6, 0, 2\}, \{1, 5, 2\}, \{1, 4, 3\}\}, \\ \{\}, \ll 3 \gg, \{\}, \{\{8, 0, 0\}, \{3, 5, 0\}, \ll 5 \gg, \{4, 4, 0\}\} \}
```

Here, we can see that some paths are empty. This means that we cannot reach those end states. So,

let's remove them from the set of end states.

```
newEnd = Delete[end, Position[paths, {}]]
{ {1, 4, 3}, {4, 1, 3}, {4, 4, 0} }
```

Since we know the shortest path between the start state to the end states, we can create edges between each node in the path.

```
\begin{array}{l} \mathsf{newEdges} = \mathsf{DeleteDuplicates}[\\ \mathsf{Flatten}[\mathsf{Table}[\mathsf{Table}[\mathsf{path}[i]] \rightarrow \mathsf{path}[i+1]], \{i, \mathsf{Length}[\mathsf{path}] - 1\}], \{\mathsf{path}, \mathsf{paths}\}]]];\\ \mathsf{newEdges} // \mathsf{Short}\\ \{\{8, 0, 0\} \rightarrow \{3, 5, 0\}, \{3, 5, 0\} \rightarrow \{3, 2, 3\},\\ \{3, 2, 3\} \rightarrow \{6, 2, 0\}, \ll 9 \gg, \{7, 1, 0\} \rightarrow \{4, 1, 3\}, \{1, 4, 3\} \rightarrow \{4, 4, 0\}\}\end{array}
```

Here is the graph for the 8-5-3 milk jug problem where the green node is a start state and the red nodes are end states.

```
startStyle = start /. {a_Integer, b_Integer, c_Integer} ↔ ({a, b, c} → Green);
endStyle = newEnd /. {a\_Integer, b\_Integer, c\_Integer} \Rightarrow ({a, b, c} \rightarrow Red);
newGraph = Graph[newEdges, VertexLabels → "Name",
  VertexStyle → Join[startStyle, endStyle], ImageSize → 155]
            \{8, 0, 0\}
  3, 5, 0}
                      {5, 0, 3}
 {3, 2, 3}
                     $ {5, 3, 0}
 * {6, 2, 0}
                     🕴 {2, 3, 3}
 * {6, 0, 2}
                      {2, 5, 1}
                     V
 {1, 5, 2}
                     {7, 0, 1}
                     🛉 {7, 1, 0}
 🔰 {1, 4, 3}
   {4, 4, 0}
                      {4, 1, 3}
```