Dear All,
Shameless Marketing.
This email is to shamelessly market to you the
graduate class I will be teaching this semester, "MAT 1350 Algebraic Knot Theory - Polynomial Time Computations".

Over the last couple of years it emerged that there exists a class of very strong knot invariants that can be computed in polynomial-time (better than the reigning champs, which are all exponential time) - meaning that in principle these invariants can be computed even for very very large knots. Furthermore, there is interesting and promising topology behind this class of invariants, and some novel algebra, especially around Lie algebras and their universal enveloping algebras. There are also many directions to explore. [Yet unfortunately, at least for now, some of this material is *hard*.]

My class will be an introduction to the topic, by means of pushing it further. If we work hard during the semester, we may, just may, be able to push things on from sl(2) to sl(3), thus turning the invariant much stronger (even if a bit less computable). It will be truly wonderful if we succeed. Though even if we fail, we will learn a great deal about knots and tangles and virtual knots and virtual tangles and expansions and Lie algebras and Lie bialgebras and about sophisticated computations using Mathematica.

The prerequisites are mathematical maturity and no fear of computers, total comfort with linear algebra: vector spaces, duals, quotients, tensor products, etc., and some appreciation of Lie algebras.

Sincerely, Dror Bar-Natan.
Web page @ http://drorbn.net/AKT-17:

Classes. Tuesdays 11-1 and Fridays 11-12 at Bahen 6180. There will also be a "HW meeting", covering no new material, on Fridays at $6: 10 \mathrm{PM}$ at or near my office.

Instructor. Dror Bar-Natan, drorbn@math. toronto.edu, http://www.math.toronto.edu/~drorbn/, Bahen 6178, 416-946-5438. Office hours: See website, or by appointment, or by opportunity.

Agenda. Group-discover and group-implement the strongest ever truly computable knot invariant. Along the way, learn some of the why (topology!), what (Lie theory!), and how (Mathematica!). Leave behind a complete documentation trail.

Alternatively, "understand everything in http:// drorbn.net/dbnvp/GWU-1612.php (video there, handout attached), and beat it".

Plan. Yes, I mean it. I plan to do deep and real and significant research as a part of this class; the sketch I already know, and the details and the implementation we will work out. We will split our time at a roughly $1: 1$ ratio between background material (Tuesdays and later Fridays), and shortest and most direct\&brute path to discovery (Fridays and later Tuesdays).

Warning. By the nature of these plans, this will be a hard class, and likely messy, and possibly we will fail to achieve the main goal. Yet even then we will learn a great deal.

Optimistic tentative "Background Material" Plan. Course introduction (hour 1). Knots, Reidemeister moves and the Jones polynomial (h2). Tangles and a faster Jones program (h3). The Alexander polynomial as a determinant and using Γ-calculus (h4-5). Seifert surfaces and genus, ribbon knots and "algebraic knot
theory" (h6-7). Finite type invariants and expansions (h8-9). The relationship with metrized Lie algebras and PBW (h10-11). The variants $v, w, b v$, and $r v$, and their expansions (h12-14). Lie bialgebras and solvable approximation (h15-16). Odds and ends (h17-18).

Optimistic tentative "Direct\&Brute Path" Plan. The Lie algebras $s l_{2}, s l_{3}, \mathfrak{g}_{0}$ and \mathfrak{g}_{1}, universal enveloping algebras and low degree computations (hours 1-2). Algebras, Yang-Baxter elements, and invariants (h3). Ordering symbols and commutation relations for \mathfrak{g}_{0} (h4-5). The \mathfrak{g}_{0} invariant (h6). The Lóros and \mathfrak{g}_{1} computations (h7-8). Morse knots and the \mathfrak{g}_{1} invariant (h9). \mathfrak{g}_{0} and \mathfrak{g}_{1} as approximations of $s l_{2}$, approximating $s l_{3}$ (h10). The $s l_{3}^{0}$ invariant (h10-11). The $s l_{3}^{1}$ invariant, fame, and glory (h12-18).

Prerequisites. Mathematical maturity and no fear of computers. Total comfort with linear algebra: vector spaces, duals, quotients, tensor products, etc. Some appreciation of Lie algebras.

Mathematica. Almost everything we say, we will immediately implement using Mathematica ${ }^{1}$. If you are seriously taking this class, you must have a working copy on your computer. If you don't already have one, "Mathematica Student Edition" (web-search that) is CDN\$150. Save the receipt! I will make every effort to refund this expense for students officially taking this class.

Class Photo. To help me learn your names, I will take a class photo on Wednesday of the third week of classes. I will post the picture on the class' web site and you will be encouraged to identify yourself on the Class Photo page (http://drorbn.net/?title= AKT-17/Class_Photo) of the class' wiki.

Videos and Wiki. We will videotape all classes and the course's web site will be centered around these videos. I have set up a system (see below) that allows anyone signed-up to index and annotate these videos on a wiki, and allows for the inclusion and linking of other pages and further material to this wiki.

Anyone signed-up can, is welcome and is encouraged to edit and add to the class' web site. In particular, students can post video annotations, notes, comments, pictures, solution to open problems, whatever. Some rules, though -

- This wiki is a part of my (Dror's) academic web page. All postings on it must be class-related (or related to one of the other projects I'm involved with).
- I (Dror) will allow myself to exercise editorial control, when necessary.
- The titles of all pages related to this class should contain and preferably begin with the string "AKT-17",
just like the title the classes' main page.
- For most AKT-17 pages, it is a good idea to put a line containing only the string \{\{AKT-17/Navigation\}\} at the top of the page. This template inserts the class' "navigation panel" at the top right of the page.
- To edit the navigation panel itself, click on the word "Navigation" on the upper right of the panel. Use caution! Such edits affect many other pages!
- Neatness matters! Material that is posted in an appealing manner will be read more, and thus will be more useful.
- Some further editing help is available at http: //drorbn.net/?title=Help:Contents.

Wiki Sign-Up. Email me with you full name, email address and preferred userid if you need an account on the class wiki.

Homework assignments will usually be jointly written, usually on the Friday HW meetings, usually they will be assigned on Mondays, and usually be due on the following Monday. There will be about 11 assignments; your HW mark will be the average of your best 6 assignments. Late assignments will be marked down by 1% per day.

Student Presentations. During class I will occasionally suggest topics for student presentations. Typically these will involve reading some research papers and lecturing to class about them a week or two after the end of formal classes.

Final Exam. If people will so prefer, there will also be a Final Examination.

Good deeds. You will be able to earn "good deed" points throughout the term. You may earn up to 90 good deed points for removing one of the major roadblocks we will encounter, up to 80 good deed points for writing a book-quality open-source and copyleft exposition of a significant and deep portion of this class. More easily, for lively participation in and markup of the class wiki, you may receive up to about 40 good deed points.

Semi-Final grade. The higher of 70% HW and 30% Presentation Mark or Final Examination, or 20% HW and 80% Presentation Mark or Final Examination.

Final Grade. If you earn $0 \leq \gamma \leq 90$ good deed points during the term, and your semi-final grade is σ, your final grade will be $\gamma+(100-\gamma) \sigma / 100$. This can be 100 even with $\gamma=0$, yet with $\gamma=90$, it will be 95 even with $\sigma=50$.

Dror's Open Notebook for this class is at http://drorbn.net/AcademicPensieve/Classes/ 17-1350-AKT/. Use at your own risk.
last modified January 9, 2017, 9:28pm

[^0]
How to use this site

January-18-12
8:59 PM

Wiki: To add/modify wiki Comments you must have an
account on Dor's wiki.
Email drorbnemath. toronto ed to ask for one, if you don't already

Abstract．Whether or not you like the formulas on this page，they Rule $5, f e$ Sorts．Provided k introduces no clashes，given describe the strongest truly computable knot invariant we know．$\left\langle\ldots f_{i} e_{j} \ldots \| \omega ; L ; Q ; P\right\rangle$ ，decompose $Q=Q_{f e} f_{i} e_{j}+Q_{f} f_{i}+Q_{e} e_{j}+$

Three steps to the computation of ρ_{1} ：

1．Preparation．Given K ，results
〈long word $\|$ simple formulas \rangle ．
2．Rewrite rules．Make the word sim－
pler and the formulas more complica－ ted，until the word＂elf＂is reached． 3．Readout．The invariant ρ_{1} is read from the last formulas．

Knot K

\downarrow preparation
$\left\langle\right.$ elf \ldots ． elf $\left.\| \omega_{0} ; L_{0} ; Q_{0} ; P_{0}\right\rangle$
\downarrow rewrite rules
\langle elf $\| \omega ;-;-; P\rangle$
\downarrow readout
$\rho_{1}(K)=\rho_{1}(\omega, P)$

Preparation．Draw K using a 0 －framed 0 －rotation planar diagram D where all crossings are poin－ ting up．Walk along D labeling features by $1, \ldots, m$ in order：over－passes，under－passes，and right－heading cups and caps（＂\pm－cuaps＂）．If x is a xing，let i_{x} and j_{x} be the labels on its over／under strands，and let s_{x} be 0 if it right－handed and -1
 otherwise．If c is a cuap，let i_{c} be its label and s_{c} be its sign．Set

$$
\begin{aligned}
(L ; Q ; P) & =\sum_{x:(i, j, s)}(-)^{s}\left(l_{j} ; t^{s} e_{i} f_{j} ;(-t)^{s} e_{i} l_{(1+s) i-s j} f_{j}+l_{i} l_{j}+\frac{t^{2 s} e_{i}^{2} f_{j}^{2}}{4}\right) \\
& +\sum_{c:(i, s)}\left(0 ; 0 ; s \cdot l_{i}\right) .
\end{aligned}
$$

This done，output $\left\langle e_{1} l_{1} f_{1} e_{2} l_{2} f_{2} \cdots e_{m} l_{m} f_{m} \| 1 ; L ; Q ; P\right\rangle$ ．
In formulas，L is always \mathbb{Z}－linear in $\left\{l_{i}\right\}, Q$ is an R－linear combina－ tion of $\left\{e_{i} f_{j}\right\}$ where $R:=\mathbb{Q}\left[t^{ \pm 1}\right]$ ，and P is an R－linear combination of $\left\{1, l_{i}, l_{i} l_{j}, e_{i} f_{j}, e_{i} l_{j} f_{k}, e_{i} e_{j} f_{k} f_{l}\right\}$ ．
（The key to computability！）
Rewrite Rules．Manipulate 〈word\｜formulas〉 expressions u－ sing the rewrite rules below，until you come to the form $\left\langle e_{1} l_{1} f_{1} \| \omega ;-;-; P\right\rangle$ ．Output（ ω, P ）．
Rule 1，Deletions．If a letter appears in word but not in formulas， you can delete it．
Rule 2，Merges．In word，you can replace adjacent $v_{i} v_{j}$ with v_{k} （for $v \in\{e, l, f\}$ ）while making the same changes in formulas （provided k creates no naming clashes）．E．g．，

$$
\left\langle\ldots e_{i} e_{j} \ldots \| Z\right\rangle \rightarrow\left\langle\ldots e_{k} \ldots \|\left. Z\right|_{e_{i}, e_{j} \rightarrow e_{k}}\right\rangle
$$

Rule 3，le Sorts．Provided k introduces no clashes，given $\left\langle\ldots l_{j} e_{i} \ldots \| \omega ; L ; Q ; P\right\rangle$ ，decompose $L=\lambda l_{j}+L^{\prime}, Q=\alpha e_{i}+Q^{\prime}$, write $P=P\left(e_{i}, l_{j}\right)$（with messy coefficients），set $q=\mathbb{C}^{\gamma} \beta e_{k}+\gamma l_{k}$ ， and output
$\left\langle\ldots e_{k} l_{k} \ldots \| \omega ; L l_{l_{j} \rightarrow l_{k}} ; t^{\lambda} \alpha e_{k}+Q^{\prime} ;\left.\mathbb{e}^{-q} P\left(\partial_{\beta}, \partial_{\gamma}\right) \mathbb{e}^{q}\right|_{\beta \rightarrow \alpha / \omega, \gamma \rightarrow \lambda \log t}\right\rangle$ Rule 4，$f l$ Sorts．Provided k introduces no clashes，given $\left\langle\ldots f_{i} l_{j} \ldots \| \omega ; L ; Q ; P\right\rangle$ ，decompose $L=\lambda l_{j}+L^{\prime}, Q=\alpha f_{i}+Q^{\prime}$ ， write $P=P\left(f_{i}, l_{j}\right)$（with messy coefficients），set $q=\mathbb{e}^{\gamma} \beta f_{k}+\gamma l_{k}$ ， and output
$\left\langle\ldots l_{k} f_{k} \ldots \| \omega ;\left.L\right|_{l_{j} \rightarrow l_{k}} ; t^{\lambda} \alpha f_{k}+Q^{\prime} ;\left.\mathbb{e}^{-q} P\left(\partial_{\beta}, \partial_{\gamma}\right) \mathbb{E}^{q}\right|_{\beta \rightarrow \alpha / \omega, \gamma \rightarrow \lambda \log t}\right\rangle$ ．

Happy Birthday， Scott！ Q^{\prime} write $P=P\left(f_{i}, e_{j}\right)$（with messy coefficients），set $\mu=1+(t-1) \delta$
and $q=\left((1-t) \alpha \beta+\beta e_{k}+\alpha f_{k}+\delta e_{k} f_{k}\right) / \mu$ ，and output

$$
\left.\left\langle\ldots e_{k} f_{k} \ldots \|_{\omega^{4} \Lambda_{k}+\mathbb{e}^{-q} P\left(\partial_{\alpha}, \partial_{\beta}\right)\left(\mathbb{e}^{q}\right)}\right\rangle\right|_{\substack{\alpha \rightarrow Q_{f} / \omega, \beta, Q_{e} / \omega, \delta \rightarrow Q_{f e l}}},
$$

where Λ_{k} is the Λ ó γ os，＂a principle of order and knowledge＂：
$\Lambda_{k}=\frac{t+1}{4}\left(-\delta(\mu+1)\left(\beta^{2} e_{k}^{2}+\alpha^{2} f_{k}^{2}\right)-\delta^{3}(3 \mu+1) e_{k}^{2} f_{k}^{2}\right.$

$$
-2\left(\beta e_{k}+\alpha f_{k}\right)\left(\alpha \beta+2 \delta \mu+\delta^{2}(2 \mu+1) e_{k} f_{k}+2 \delta \mu^{2} l_{k}\right)
$$

$$
-4(\alpha \beta+\delta \mu)\left(\delta(\mu+1) e_{k} f_{k}+\mu^{2} l_{k}\right)-4 \delta^{2} \mu^{2} e_{k} f_{k} l_{k}
$$

$$
\left.+(t-1)\left(2(\alpha \beta+\delta \mu)^{2}-\alpha^{2} \beta^{2}\right)\right)
$$

elf merges，$m_{k}^{i j}$ ，are defined as compositions

$$
e_{i} l_{i} \overline{f_{i} e_{j}} l_{j} f_{j} \xrightarrow{s_{x}^{f_{x} e_{j}}} e_{i} \overline{l_{i} e_{x}} \overline{f_{x} l_{j}} f_{j} \xrightarrow{s_{x}^{l_{i}, x} / / s_{x}^{f_{x} l_{j}}} \overline{e_{i} e_{x}} \overline{l_{x} l_{x}} \overline{f_{x} f_{j}} \underset{\substack{i, j, x \rightarrow k}}{ } e_{k} l_{k} f_{k}
$$

Readout．Given $\langle e l f \| \omega ;-;-; P\rangle$ ，output

$$
\rho_{1}(K):=\frac{t\left(\left.P\right|_{e, l, f \rightarrow 0}-t \omega^{\prime} \omega^{3}\right)}{(t-1)^{2} \omega^{2}} .
$$

（ ω is the Alexander polynomial，L and Q are not interesting）．
Experimental Analysis（ $\omega \varepsilon \beta /$ Exp）．Log－log plots of computation time（sec）vs．crossing number，for all knots with up to 12 cros－ sings（mean times）and for all torus knots with up to 48 crossings： so

Power．On the 250 knots with at most 10 crossings，the pair （ ω, ρ_{1} ）attains 250 distinct values，while（Khovanov，HOMFLY－ PT）attains only 249 distinct values．To 11 crossings the numbers are $(802,788,772)$ and to 12 they are $(2978,2883,2786)$ ．
Genus．Up to 12 xings，always ρ_{1} is symmetric under $t \leftrightarrow t^{-1}$ ． With ρ_{1}^{+}denoting the positive－degree part of ρ_{1} ，always $\operatorname{deg} \rho_{1}^{+} \leq$ $2 g-1$ ，where g is the 3 －genus of K（equallity for 2530 knots）． This gives a lower bound on g in terms of ρ_{1}（conjectural，but undoubtedly true）．This bound is often weaker than the Alexander bound，yet for 10 of the 12 －xing Alexander failures it does give the right answer．
Why Works？The Lie algebra \mathfrak{g}_{1}（below）is a＂solvable approxi－ mation of $s l_{2}$＂．
Theorem．The map（as defined below）
$\left.\langle w \| \omega ; L ; Q ; P\rangle \mapsto \mathbb{O}\left(\omega^{-1} \mathbb{e}^{L \log t+\omega^{-1}} Q_{(}+\epsilon \omega^{-4} P\right): w\right) \in \hat{\mathcal{U}}\left(\mathrm{g}_{1}\right)$
is well defined modulo the sorting rules．It maps the initial prepa－ ration to a product of＂R－matrices＂and＂cuap values＂satisfying the usual moves for Morse knots（R3，etc．）．（And hence the result is a＂quantum invariant＂，except computed very differently；no representation theory！）．

1-Smidgen $s l_{2}$ Let \mathfrak{g}_{1} be the 4-dimensional Lie algebra $\mathfrak{g}_{1}=$ $\left\langle h, e^{\prime}, l, f\right\rangle$ over the ring $R=\mathbb{Q}[\epsilon] /\left(\epsilon^{2}=0\right)$, with h central and with $[f, l]=f,\left[e^{\prime}, l\right]=-e^{\prime}$, and $\left[e^{\prime}, f\right]=h-2 \epsilon l$. Over $\mathbb{Q}, \mathfrak{g}_{1}$ is a solvable approximation of $s l_{2}: \mathfrak{g}_{1} \supset\left\langle h, e^{\prime}, f, \epsilon h, \epsilon e^{\prime}, \epsilon l, \epsilon f\right\rangle \supset$ $\left\langle h, \epsilon h, \epsilon e^{\prime}, \epsilon l, \epsilon f\right\rangle \supset 0$. Pragmatics: declare $\operatorname{deg}\left(h, e^{\prime}, l, f, \epsilon\right)=$ $(1,1,0,0,1)$ and set $t:=\mathbb{e}^{h}$ and $e:=(t-1) e^{\prime} / h$.
How did it arise? $s l_{2}=\mathfrak{b}^{+} \oplus \mathfrak{b}^{-} / \mathfrak{h}=: s l_{2}^{+} / \mathfrak{h}$, where $\mathfrak{b}^{+}=$ $\langle l, f\rangle /[f, l]=f$ is a Lie bialgebra with $\delta: \mathfrak{b}^{+} \rightarrow \mathfrak{b}^{+} \otimes \mathfrak{b}^{+}$by $\delta:(l, f) \mapsto(0, l \wedge f)$. Going back, $s l_{2}^{+}=\mathcal{D}\left(\mathfrak{b}^{+}\right)=\left(\mathfrak{b}^{+}\right)^{*} \oplus \mathfrak{b}^{+}=$ $\left\langle h^{\prime}, e^{\prime}, l, f\right\rangle / \cdots$. Idea. Replace $\delta \rightarrow \epsilon \delta$ over $\mathbb{Q}[\epsilon] /\left(\epsilon^{k+1}=0\right)$. At $k=1$, get $[f, l]=f,\left[f, h^{\prime}\right]=-\epsilon f,\left[l, e^{\prime}\right]=e^{\prime},\left[h^{\prime}, e^{\prime}\right]=-\epsilon e^{\prime}$, $\left[h^{\prime}, l\right]=0$, and $\left[e^{\prime}, f\right]=h^{\prime}-\epsilon l$. Now note that $h^{\prime}+\epsilon l$ is central, so switch to $h:=h^{\prime}+\epsilon l$. This is \mathfrak{g}_{1}.
Ordering Symbols. \mathbb{O} (poly \mid specs) plants the variables of poly in $\hat{\mathcal{S}}\left(\oplus_{i} \mathfrak{g}\right)$ along $\hat{\mathcal{U}}(\mathfrak{g})$ according to specs. E.g.,

$$
\mathcal{O}\left(e_{1} \mathbb{E}^{e_{3}} l_{1}^{3} l_{2} f_{3}^{9} \mid f_{3} l_{1} e_{1} e_{3} l_{2}\right)=f^{9} l^{3} e \mathbb{E}^{e} l \in \hat{\mathcal{U}}(\mathrm{~g})
$$

This enables the description of elements of $\hat{\mathcal{U}}(\mathfrak{g})$ using commutative polynomials / power series. In \mathfrak{g}_{1}, no need to specify h / t. Algebras and Invariants. Given any unital algebra A (even better if A is Hopf; typically, $A \sim \hat{\mathcal{U}}(\mathrm{~g})$), appropriate orange $R \in A \otimes A$, and appropriate cuaps $\in A$, get an $A^{\otimes S}$-valued invariant of pure S-component tangles:

What we didn't say (more, including videos, in $\omega \varepsilon \beta /$ Talks).

- ρ_{1} is "line" in the coloured Jones polynomial; related to Melvin-Morton-Rozansky.
- ρ_{1} extends to "rotational virtual tangles" and is a projection of the universal finite type invariant of such.
- ρ_{1} seems to have a better chance than anything else we know to detect a counterexample to slice=ribbon.
- ρ_{1} leads to many questions and a very long to-do list. Years of work, many papers ahead. Have fun!

Demo Programs.

$\omega \varepsilon \beta /$ Demo
$\operatorname{CF}\left[\mathcal{E}_{-}\right]:=\operatorname{Module}\left[\left\{\right.\right.$ vars = Union@Cases $\left.\left[\mathcal{E}, \mathrm{e}_{-}\left|l_{-}\right| f_{-}, \infty\right]\right\}$,
If [vars === \{\}, Factor[δ],
Total[CoefficientRules[\mathcal{E}, vars] /.
$\left(p_{-} \rightarrow c_{-}\right): \rightarrow$ Factor $[c]$ Times @@ (vars ${ }^{p}$)]]];
$\mathrm{CF}\left[\mathcal{E}_{-} \mathbb{E}\right]:=\mathrm{CF} / @ \mathcal{E}$;
$\mathbb{E}\left[i_{-}, j_{-}, s_{-}\right]:=\mathbb{E}\left[1,(-1)^{s} 1_{j},(-t)^{s} e_{i} f_{j}, \quad\right.$ Preparation
$\mathrm{t}^{s} \mathrm{e}_{i} \mathbf{l}_{(1+s)}$ i-sj $\left.\mathrm{f}_{j}+(-1)^{s} \mathbf{l}_{i} \mathbf{l}_{j}+\left(-\mathrm{t}^{2}\right)^{s} \mathrm{e}_{i}^{2} \mathrm{f}_{j}^{2} / 4\right] ;$
$\mathbb{E}\left[i_{-}, s_{-}\right]:=\mathbb{E}\left[1,0,0, s 1_{i}\right]$;
$\mathbb{E} /: \mathbb{E}\left[1, L 1_{-}, Q 1_{-}, P 1_{-}\right] \mathbb{E}\left[1, L 2_{-}, Q 2_{-}, P 2_{-}\right]:=$
$\mathbb{E}[1, L 1+L 2, Q 1+Q 2, P 1+P 2] ;$
$\mathbf{z 1}=(\mathbb{E}[1,11,0] \mathbb{E}[4,2,-1] \mathbb{E}[15,5,0] \quad$ Preparing the Trefoil $\mathbb{E}[6,8,-1] \mathbb{E}[9,16,0] \mathbb{E}[12,14,-1] \mathbb{E}[3,-1] \mathbb{E}[7,+1]$ $\mathbb{E}[10,-1] \mathbb{E}[13,+1])$

```
E [1, - l }\mp@subsup{2}{2}{}+\mp@subsup{l}{5}{}-\mp@subsup{l}{8}{}+\mp@subsup{l}{11}{}-\mp@subsup{l}{14}{}+\mp@subsup{l}{16}{}
```

$-\frac{e_{4} f_{2}}{t}+e_{15} f_{5}-\frac{e_{6} f_{8}}{t}+e_{1} f_{11}-\frac{e_{12} f_{14}}{t}+e_{9} f_{16}$,
$-\frac{e_{4}^{2} f_{2}^{2}}{4 t^{2}}+\frac{1}{4} e_{15}^{2} f_{5}^{2}-\frac{e_{6}^{2} f_{g}^{2}}{4 t^{2}}+\frac{1}{4} e_{1}^{2} f_{11}^{2}-\frac{e_{12}^{2} f_{12}^{2}}{4 t^{2}}+\frac{1}{4} e_{9}^{2} f_{16}^{2}+e_{1} f_{11} l_{1}+$
$\frac{e_{4} f_{2} l_{2}}{t}-l_{3}-l_{2} l_{4}+l_{7}+\frac{e_{6} f_{8} l_{8}}{t}-l_{6} l_{8}+e_{9} f_{16} l_{9}-l_{10}+$
$\left.l_{1} l_{11}+l_{13}+\frac{e_{12} f_{14} l_{14}}{t}-l_{12} l_{14}+e_{15} f_{5} l_{15}+l_{5} l_{15}+l_{9} l_{16}\right]$
$\mathbf{D P}_{\mathrm{X}_{-} \rightarrow \mathbf{D}_{\alpha_{-}}, y_{-} \rightarrow \mathbf{D}_{\beta_{-}}}\left[P_{-}\right]\left[f_{-}\right]:=\quad$ Differential Polynomials
Total [CoefficientRules $[P,\{x, y\}] / . \quad\left(\right.$ Implementing $\left.P\left(\partial_{\alpha}, \partial_{\beta}\right)(f)\right)$
$\left.\left(\left\{m_{-}, n_{-}\right\} \rightarrow c_{-}\right): \rightarrow C[f,\{\alpha, m\},\{\beta, n\}]\right]$
$\mathrm{S}_{\mathrm{l}_{-}(x: e \mid f)_{i_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\quad l e \text { and } f \text { Sorts } .}$
With $\left[\left\{\lambda=\partial_{1_{j}} L, \alpha=\partial_{x_{i}} Q, q=e^{\gamma} \beta x_{k}+\gamma l_{k}\right\}, C F[\right.$
$\mathbb{E}\left[\omega, L /, l_{j} \rightarrow l_{k}, \mathrm{t}^{\lambda} \alpha x_{k}+\left(Q / . x_{i} \rightarrow 0\right)\right.$,
$\left.\left.\left.e^{-q} \mathrm{DP}_{1_{j} \rightarrow D_{\gamma}, x_{i} \rightarrow D_{\beta}}[P]\left[e^{q}\right] / .\{\beta \rightarrow \alpha / \omega, \gamma \rightarrow \lambda \log [t]\}\right]\right]\right] ;$
$\Delta\left[k_{-}\right]:=\left((t-1)\left(2(\alpha \beta+\delta \mu)^{2}-\alpha^{2} \beta^{2}\right)-4 e_{k} l_{k} f_{k} \delta^{2} \mu^{2}-\right.$
$\delta(1+\mu)\left(f_{k}^{2} \alpha^{2}+\mathrm{e}_{k}^{2} \beta^{2}\right)-\mathrm{e}_{k}^{2} \mathrm{f}_{k}^{2} \delta^{3}(1+3 \mu)-\quad$ The Λ ó $\gamma \mathrm{O}$
$2\left(\alpha \beta+2 \delta \mu+e_{k} f_{k} \delta^{2}(1+2 \mu)+2 l_{k} \delta \mu^{2}\right)\left(f_{k} \alpha+e_{k} \beta\right)-$
$\left.4\left(\mathbf{l}_{k} \mu^{2}+\mathbf{e}_{k} \mathbf{f}_{k} \delta(1+\mu)\right)(\alpha \beta+\delta \mu)\right)(1+\mathrm{t}) / 4$;
$\mathrm{S}_{\mathrm{f}_{-} \mathrm{e}_{j_{-} \rightarrow k_{-}}\left[\mathbb{E}\left[\omega_{-}, L_{-}, Q_{-}, P_{-}\right]\right]:=\quad f e \text { Sorts }}$
With $\left[\left\{q=\left((1-t) \alpha \beta+\beta \mathbf{e}_{k}+\alpha \mathbf{f}_{k}+\delta \mathbf{e}_{k} \mathbf{f}_{k}\right) / \mu\right\}, \operatorname{CF}[\right.$
$\mathbb{E}\left[\mu \omega, L, \mu \omega q+\mu\left(Q / . f_{i} \mid \mathrm{e}_{j} \rightarrow 0\right)\right.$,
$\left.\mu^{4} \mathrm{e}^{-q} \mathrm{DP}_{\mathrm{f}_{i} \rightarrow \mathrm{D}_{\alpha}, \mathrm{e}_{j} \rightarrow \mathrm{D}_{\beta}}[P]\left[\mathrm{e}^{q}\right]+\omega^{4} \Lambda[k]\right] / . \mu \rightarrow \mathbf{1}+(\mathrm{t}-\mathbf{1}) \delta /$.
$\left\{\alpha \rightarrow \omega^{-1}\left(\partial_{f_{i}} Q / . \mathbf{e}_{j} \rightarrow 0\right), \beta \rightarrow \omega^{-1}\left(\partial_{\mathrm{e}_{j}} Q / . \mathrm{f}_{i} \rightarrow 0\right)\right.$,
$\left.\left.\left.\delta \rightarrow \omega^{-1} \partial_{f_{i}, e_{j}} Q\right\}\right]\right]$;
$m_{i_{-}, j_{-} \rightarrow k_{-}}\left[z_{-} \mathbb{E}\right]:=\operatorname{Module}[\{x, z\}, \quad$ Elf Merges
CF[(z// $\left.\left.\left.S_{f_{i} e_{j \rightarrow x}} / / S_{1_{i} e_{x \rightarrow x}} / / S_{f_{x} 1_{j \rightarrow x}}\right) / . z_{-i|j| x} \rightarrow z_{k}\right]\right]$
(Do[z1 = z1 // mi,k>1, \{k, 2, 16\}]; z1)

Rewriting the Trefoil
 (by merging 16 elves)
$\rho_{1}\left[\mathbb{E}\left[\omega_{-},,_{-}, P_{-}\right]\right]:=\operatorname{CF}\left[\frac{\mathrm{t}\left(\left(P / e_{-}\left|1_{-}\right| f_{-} \rightarrow 0\right)-\mathrm{t} \omega^{3}\left(\partial_{\mathrm{t}} \omega\right)\right)}{(\mathrm{t}-1)^{2} \omega^{2}}\right]$
$\rho_{1}[z 1] / /$ Expand
$\rho_{1}\left(3_{1}\right)$
$\frac{1}{t}+t$

References.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, University of North Carolina PhD thesis, $\omega \varepsilon \beta / \mathrm{Ov}$.
[Ro1] L. Rozansky, A contribution of the trivial flat connection to the Jones polynomial and Witten's invariant of $3 d$ manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061.
[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.
[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:math/0201139.

diagram	$n_{k}^{t} \quad$ Alexander's ω^{+} Today's / Rozansky's ρ_{1}^{+}	genus / ribbon unknotting number / amphicheiral	diagram	$n_{k}^{t} \quad$ Alexander's ω^{+} Today's / Rozansky's ρ_{1}^{+}	genus / ribbon unknotting number / amphicheiral
	$\begin{array}{ll}0_{1}^{a} & 1 \\ 0 & \end{array}$	$\begin{aligned} & 0 / \checkmark \\ & 0 / \checkmark \end{aligned}$		$\begin{array}{ll} 3_{1}^{a} & t-1 \\ t & \end{array}$	$\begin{aligned} & 1 / X \\ & 1 / X \end{aligned}$
	$\begin{array}{ll}4_{1}^{a} & 3-t \\ 0 & \end{array}$	$\begin{aligned} & 1 / X \\ & 1 / V \end{aligned}$		$\begin{aligned} & 5_{1}^{a} \quad t^{2}-t+1 \\ & 2 t^{3}+3 t \end{aligned}$	$\begin{aligned} & 2 / x \\ & 2 / x \end{aligned}$

[^0]: ${ }^{1}$ Q. Can I use language X instead of Mathemtica? A. Theoretically, you could and it would be a wonderful contribution if you did. In practice you'd be taking something very difficult and turning it into nearly impossible. So the honest answer is "No".

