Dror Bar-Natan: Academic Pensieve: Classes: 1617-257b-AnalysisII:
1617-257 Wed Feb 8, hour 51: Alternating Tensors February 1, 2017 1:27 PM

HD 13 due, HW 14 on web! Read Along. Sections 27-29.
Riddle Along. The Cantor set C is of measure 0 . Is it also true for $C+C=\{x+y: x, y \backslash i n C\}$? Is it always true that if B is of measure 0 , then so is $B+B$?

$$
S_{n}:=\{\text { bijcctions } \sigma: n 巴\} \quad \exists \prod_{0} \operatorname{sign}: \sin _{\rightarrow}(\pm 1\} \quad \operatorname{sit}(-1)^{\sigma} \bar{v}=(-1)^{\sigma}(-1)^{\bar{c}}(-1)^{(i j)}=-1
$$

Thm $\forall I \in\left(\frac{n}{k}\right) \exists 0_{0} \psi_{I} \in A^{k}(V)$ s.t.
$\forall J \in n_{a}^{k} \quad \psi_{I}\left(n_{J}\right)=\delta_{I J j} \quad\left\{\psi_{I}: I f\left(\frac{\Lambda}{k}\right)\right\}$ is a basis of $A^{k}(V)$ so $\operatorname{dim} A^{k}(V)=(\hat{k})$. on board

PF An alternating tensors is determined by its values on $\left\{a_{\sigma}:\right.$ JR $\left.\left(\frac{n}{k}\right)\right\}$ so if ψ_{I} exists, it is unique.
Existance: $\quad Y_{ \pm}\left(x_{1} \ldots x_{k}\right):=\sum_{\tau+s_{n}}(-1)^{\tau} \phi_{ \pm}^{t}\left(x_{1} \ldots, x_{k}\right)$ Also done -
Remains to show: lin incas, span. $a \lim 3$ example

Claim In $V=\mathbb{R}^{n} w / a_{i}=e_{i}, \quad Y_{I}\left(x_{1} \ldots x_{k}\right)=\operatorname{det}\left(X_{I}\right), w / X_{I}=$ rows I of $X=\left(x_{1} \mid, p x_{c}\right)$ In particular, if $I=(1 \ldots . n), \quad \psi_{I}\left(x_{1} \ldots x_{k}\right)=\operatorname{det}(x)$.
proof. Both sides are multi-linear and alternating, \quad so $=\operatorname{det}\left(\begin{array}{ccc}x_{1 i} & x_{2 i 1} & \ldots \\ \vdots & x_{k i} \\ x_{1 i k} & \ldots & \cdots\end{array}\right)$ so it is enough to verify equallity on as.

The $\exists \emptyset_{0}$ op $\cap: A^{k}(V) \times A^{l}(V) \rightarrow A^{k+l}(V)$ sit.

1. Λ is associative \& bilinear.
2. \wedge is "super-symmetric".
3. $\psi_{ \pm}=\phi_{i,} \wedge \phi_{i_{2}} \wedge \ldots \phi_{i k}$

In addition, if $T: V \rightarrow W$, $T^{*}(F \cap g)=T^{*}(f) \wedge T^{*}(g)$,
A thant victor $\xi=(x, V)$ to $\mathbb{R}^{n} j T_{x}\left(\mathbb{R}^{n}\right)$ is a victor spice.
Curve \& tangents.
Tangents and dircetiond durivativas: D\}f
Push for words under $\alpha: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ j Covariance
To (M) for a manifold M; curves, directional dorivathes, pushforwarts. cr victor fields.

