http://drorbn.net/AcademicPensieve/Classes/1617-257b-AnalysisII/one/1617-257_Wed_Feb_8,_hour_51-_Alternating_Tensors.pdf

Dror Bar-Natan: Academic Pensieve: Classes: 1617-257b-AnalysisII:

1617-257 Wed Feb 8, hour 51: Alternating Tensors February 1, 2017 1:27 PM Au HW 13 due, HW 14 on web! Read Along. Sections 27-29. Riddle Along. The Cantor set C is of measure 0. Is it also true for C+C={x+y: x,y\in C}? Is it always true that if B is of measure 0, then so is B+B? Sn:= { bijections o: n = } =] sign: sn (+1) sit (-1) = (-1) (-1) - (-1) (-1) = -1. Thm VIE (n) JU HEAK(V) s.t. $\forall J \in \underline{\Pi}_{a}^{k} \quad \forall I(n_{J}) = d_{JJ} \quad \forall Y_{I} : I \in \binom{A}{k} \end{bmatrix}$ is a basis of $A^{*}(V)$ so $\dim A^{*}(V) = \binom{A}{k}$. PE An alternating tensors is determined by its values on fag: JE((*)) so iF YI exists, it is wright. Existence: $\Psi_{\pm}(x_1...,x_k) := \sum_{\tau \neq s_n} (-1)^{\tau} \phi_{\pm}^{\tau}(x_1...,x_k)$ also been -Remains to show: lin indep, span. Jone line Chim In V=1R" w/ ni=c; , YI(X1...Xk) = det(XI), W/ XI = rows I of X=(X1/1/4) In particular, if J=(1,...,n), $\Psi_J(X_1...X_k)=det(X)$. proof. Both sides are multi-linear and alternating, X_{1i_1} , X_{2i_1} , X_{ki_k} Proof. Both sides are multi-linear and alternating, so it is knough to verify equality on as. The $\exists \forall op \land A^{k}(V) \times A^{l}(V) \longrightarrow A^{k+p}(V) s.t.$ 1. A is associative & biliner. 2. A is "super-symmetric". 3. $\Psi_t = \phi_{i_1} \wedge \phi_{i_2} \wedge \dots \otimes \phi_{i_K}$ In addition, if $T: V \to W$, $T^*(Fng) = T^*(F) \wedge T^*(g)$, A twyint victor == (x, v) to kn; Tx(1kn) is a victor spice. Curve & Amgents. tangents and directional derivatives: DEF Push Forwards under X: IKK-> IRn; Guarkage TP(M) For a manifold M; curves, directional derivatives, push Forwards. Cr vertor Fields