Dror Bar-Natan: Academic Pensieve: Classes: 1617-257b-AnalysisII:

1617-257 Wed Feb 15, hour 54: Wedge products, tangent

vectors

February 15, 2017 12:49 PM

HW14 due, HW15 on web by midnight.

Read Along. Sections 27-29.

Riddle Along. Can you colour the points of the plane in 4 colours such that no two points of distance exactly 1 will have the same colour? In 5 colours? 6? 7? 8?

The JU op A: At(V) × Al(V) → At+l(V) s.t. 1. Λ is associative & biliner. Only 2. Λ is "super-symmetric". Uniqueness 3. $\Psi_{\pm} = \phi_{i_1} \wedge \phi_{i_2} \wedge \dots \otimes \phi_{i_K}$

Also, if T: V-IW, then T*: Attlw) = At(V) and T*(FIG)= T*(F) IT* 19). A tangent vector $\xi = (x, v)$ to $kn^{-1}j$ $T_{2c}(lk^{-1})$ is a vector spece. All Curves & tangents. tangents and directional Jurivatives: $D_{\xi}F$ done line. Push Forwards under $\chi: lk^{k} \to lk^{n}$; Covariance T(m) Curves in the second s TP(M) For a mmifold M; curves, directional derivatives, pushforwards. Cr vertor Fields

UTFA Council Meeting: Rotman 368 Classroom B