Dror Bar-Natan: Academic Pensieve: Classes: 1617-257b-AnalysisII:
1617-257 Wed Feb 15, hour 54: Wedge products, tangent vectors
February 15, 2017

HW14 due, HW15 on web by midnight.
Read Along. Sections 27-29.
Riddle Along. Can you colour the points of the plane in 4 colours such that no two points of distance exactly 1 will have the same colour? In 5 colours? 6? 7? 8?
The \exists ! op $\Lambda: A^{k}(V) \times A^{\prime}(V) \longrightarrow A^{k+1}(V)$ sit. 1. Λ is associative \& bilinear. only
2. \wedge is "supar-symmetric". \} ~ u n i q u e n e s s ~
3. $\psi_{ \pm}=\phi_{i 1} \wedge \phi_{i 2} \wedge \ldots \phi_{i k}$
$A l$ so, if $T: V \rightarrow W$, then $T^{*}: A^{*}(W) \rightarrow A^{k}(V)$ and $T^{*}(F \cap g)=T^{*}(f) \wedge T^{*}(g)$.
A timgint victor $\xi=(x, v)$ to $\mathbb{R}^{n} j T_{x}\left(\mathbb{R}^{n}\right)$ is a victor spice.
Curves \& timgonts.
tangents and directions derivatives: $D_{\xi} F$ done line.
Push for words under $\alpha: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$; Covariance
$T_{p}(M)$ for a manifold M; curves, directional derivatives, pushforwarts.
c^{r} victor fields.

UTFA Council Meeting: Rotman 368 Classroom B

