Dror Bar-Natan: Academic Pensieve: Classes: 1617-257b-AnalysisII:
1617-257 Wed Feb 1, hour 48: multilinear algebra
January 16, 2017 8:21 AM
HW12 due, HW13 on web.
Read Along. Sections 26-27.
Riddle Along. Four points form a perfect square in the plane. Prove that you cannot turn that square into
a bigger one by a sequence of moves of the form $(x, y)->(x, 2 x-y)$ applied to pairs of points within the four.
Def.

$$
\mathcal{L}^{k}(V):=\left\{f: V^{k} \rightarrow \mathbb{R}: \begin{array}{llll}
& V \mapsto f\left(v_{1} \ldots v_{i-1}, v_{0}\right. & \left.v_{i+1} \ldots v_{k}\right) & \text { is } \\
& \text { line in } v_{1} \text {, for all } 1 \leq i \leq k
\end{array}\right\}
$$

on bund
For $k=1$, this is V^{*}, "the dual of V^{\prime}. In gunerd, these we " k-tensors. claim $\alpha^{k}(V)$ is a verlor space.
claim If $\left(a_{1}, \ldots a_{n}\right)$ is a basis for V, and $I=(i, \ldots i k) \in\{1, \ldots i n\}^{k}=n^{k}$ then there is \sim unique $\left.\phi_{I} \in \mathcal{L}^{k} \mid V\right)$ sit. for ovary $J=\left(j_{1} \ldots b_{k}\right) \in \underline{n}^{k}$
(*) $\quad \phi_{I}\left(a_{j_{1}} \ldots a_{j_{k}}\right)=\left\{\begin{array}{ll}1 & I=\sigma \\ 0 & \text { othorwiso }\end{array}=\delta_{I J}\right.$
These Φ_{I} make a basis of $\alpha^{k}(V) \quad\left(\right.$ so $\operatorname{dim} \alpha^{k}(V)=n^{k}$)
steps. 1. An element of $\alpha^{k}(v)$ is determiner by it's values on sags. ∂t basis vectors, so if exists, ϕ_{I} is unique.
2. If $k=1, \quad \phi_{i}\left(a_{j}\right)=8_{i j}$ determines $\phi_{i} \in \mathcal{L}^{\prime}(V)=V^{*}$.
3. Sit $\phi_{工}\left(V_{1} \ldots V_{k}\right)=\phi_{i}\left(V_{1}\right) \cdot \phi_{i 2}\left(V_{2}\right) \ldots \phi_{i k}\left(V_{k}\right)$; it is in $\alpha^{k}(V)$ and it satisfies
4. The $\phi_{ \pm}$'s are linvindop. done line
5. The $\phi_{ \pm \prime s}$ span $\alpha^{k}(V)$.

Easy yet worth noting: Reeve is a map $\otimes: \alpha^{k}(V) \times \alpha^{m}(V) \rightarrow \alpha^{k+m}(V)$.
It is bilinear, associative, $\& \Phi_{I}=\phi_{i,} \otimes \phi_{i,} \otimes \ldots \phi_{i k}$
points, tangent vectors push forward; functions pull back
Important yet often undr-rated: Given a linear T:V \rightarrow, There is a "payback" $T^{*}: \alpha^{k}(W) \longrightarrow \mathcal{L}^{k}(V)$. It is
*: linear (meaning-..)

* Compatible w / \geqslant (meaning,....)
* Contravariant: (meaning:...)

