Dror Bar-Natan: Academic Pensieve: Classes: 1617-257b-AnalysisII:

1617-257 Fri Jan 27, hour 46 draft January 16, 2017 8:21 AM

$$
\int_{M} d w=\int_{\partial M} w
$$

- Read Along: 24-25
- Riddle Along: The game of 15 is played as follows. Two players alternate choosing cards numbered between 1 and 9 , with repetitions forbidden, so the game ends at most after 9 moves (or 4 and a half rounds). The first player to have within their cards a set of precisely 3 cards that add up to 15 wins. Would you rather move first or second?

To do: Last class in pictures
Q Is (11) diffeo to Aside Is \square diffor to ?

$V_{1} \cap V_{2}$ in an open $n b d$ of p in M Let $U_{1}^{\prime}=\alpha_{1}^{-1}\left(V_{1} \cap V_{2}\right) \quad V_{2}^{\prime}=\alpha_{2}^{-1}\left(V_{1} \cap V_{2}\right)$
these are open nbds of q_{1}, r_{2} in H^{k} $\alpha_{2}^{0}{ }^{-1} \alpha_{1}: U_{1}^{\prime} \rightarrow U_{2}^{\prime}$ is a homeo mapping an inher point to an eige point; thes
is impossible but very hard to show. If only we knew $\alpha_{1}^{-1} \& \alpha_{2}{ }^{-1}$ wae d.ffable... We' μ only do $\alpha_{1}^{-1} ; \alpha_{2}^{-1}$ is similur land is in book)
proposition If M^{k} is a chss C^{r} manifold in \mathbb{R}^{n} anb $\alpha: U C \mathbb{R}^{k} \longrightarrow V C M^{k}$ is a coordinate patch, thon $\alpha^{-1}: V \rightarrow U$ is C^{\prime}.
Proof
NTS: There is a cr function $\beta: V^{-r} \rightarrow U^{\prime}$, s.t. V^{\prime} is a nbd of p in \mathbb{K}^{n}, V^{\prime} is a nbd of g contuinel in V, and $\beta o \alpha=I d$ on V '. PE: For Convenience, assume the first k rows of $d q(q)$ are lin intep., and let $\pi: \mathbb{R}^{n} \rightarrow \mathbb{p}^{k}$ be the proj. on the first k coords. Then d(T10 $)(q)$ is invortible, so \#oa has an invorse γ near \#(p), preciscly, on some nbd W of $H(\rho)$ for which $(\pi o \alpha)^{-1}(w) \subset U$. Now let $V^{\prime}=\pi^{-1}(\omega), V^{\prime}=(\pi 0 \alpha)^{-1}(\omega)=\alpha^{-1}\left(M \cap V^{\prime}\right)$ and $\beta=\gamma_{0} \pi$. corollwy. "transition functions" are C!.

Theorms we skip:

1. ∂m is a $(k-1)$-manifoll.
2.

If $A \subset R^{n}$ is open and $f: A \rightarrow M B$ is C^{r}, then for most h $f^{-1}(h)$ is a manifold. and $h \in \ln$ is such that whenover $p \in F^{-1}(h)$, off(p) hos

and $h \in \mathbb{R}$ is such that whenever $\operatorname{PEFF}^{-1}(h)$, of (p) has rank 1, then $\left.f^{-1} / h\right)=N$ is a manifold, and so we $F^{-1}((-\infty, h])=M, \& F^{-1}([h, \infty))=M_{2}$, and $\partial M_{1}=\partial M_{2}=N$
corollary: S^{n-1} is a mold $k \quad S^{n-1}=\partial D^{n}$.

