TT2: Q3 and Q6 Marking Key

Problem 3.

1. Very carefully, define "a bounded function f is integrable on a rectangle Q ". Assume that your reader does not know the words / phrases "partition of an interval", "partition of Q ", "a rectangle in a partition", "the volume of a rectangle", "lower sum", "upper sum", and whatever remains.
2. Directly from the definitions, prove that constant functions are integrable.

Marking Key. 18 for part 1, of which 9 global and 9 local. 7 for part 2.
$(5 / 25)$ Fully correct quote/use of " f integrable iff $\mu(D(f))=0$ ".
(-3) The statement $\sum V\left(R_{i}\right)=V(Q)$ is skipped.
(-4) Reverse-order definitions.
(-2) Min/max instead of inf/sup.
(-1) Restricted to 2D.

Problem 6. Let $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$. Prove:

1. Interchanging two of these vectors does not change the volume of the parallelepiped they span.
2. Adding a multiple of one of those vectors to another one does not change the volume of the parallelepiped they span.
3. Multiplying one of these vectors by a scalar $\lambda \in \mathbb{R}$ multiplies the volume of the parallelepiped they span by $|\lambda|$.
4. If these vectors are orthonormal, the volume of the parallelepiped they span is 1 .

Tip. For this problem, you may freely use everything stated in class.
Marking Key. 5 points for using a reasonable volume formula or definition. Then 5 points for each part.
$6 / 25$ if pretended that $k=n$.
(-15) All hinges on $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for non-square matrices.
(-2) The action on $X^{T} X$ is just on rows/columns, rather than both.
(-3) Column actions by $X \mapsto E X$, then cancelled middle terms in $\operatorname{det}\left(X^{T} E^{T} E X\right)$.

