Read Along：Secs 15．Agenda：More improper integrals
Riddle Along： N prisoners each wears infinitely many randomly－chosen b / w hats．Simultaneously each needs to point at a black hat on their head． How can they maximize the chance that they will all get it right？
$A \subset \mathbb{R}^{k}$ open，$f: A \rightarrow \mathbb{R}$ cont．$f_{ \pm}=\max (\pm f, 0) f=f_{+}-f_{-}|f|=f_{+}+f_{-}$
$F \geqslant 0 \Rightarrow E_{A} F:=\sup \left\{\phi_{D} F: \begin{array}{l}D C A \text { compact } \\ \text { and } \\ \text { vetifiabll }\end{array}\right\} \quad \#_{A} F:=E_{A} f_{+}-\#_{A} F_{-}$if if all
Def：CnpA＂Cnvises to $A^{\prime \prime}$ means 1．Cen capet \＆rect．2．$C_{n} c i n t c_{n+1} 3 . U c_{n}=A$
The Given C_{n} IA，㐘f exist of $\int_{C_{n}}|f|$ is bad，and then $f_{A} f=\lim _{n \rightarrow \infty} \phi_{C_{n}} f$ ．
Rf of the ．If $f \geqslant 0$ 寿 f implies $\int_{C_{n}} f \leqslant \sup \int_{1 D} f=f_{A} f$ ，so
$\lim _{n \rightarrow-} \int_{C_{n}}$ exists and is $\leqslant f_{A} f$ ．
If $\lim _{n \rightarrow \infty} \int_{C_{n}} F$ exist \＆$D C A$ is compact，then $D C C_{n}$ for some n_{0} ，hence $\int_{D} F \leqslant \int_{C_{n_{0}}} F \leqslant \lim _{n \rightarrow \infty} \int_{C_{n}} F$ so $F_{A} \leqslant \lim _{n \rightarrow \infty} \int_{C_{n}} F$ so $f f=\lim _{n \rightarrow \infty} \int_{C_{n}} F$ ． otherwise $f=f_{+}-f$ w／$f_{+} \geqslant 0, f \geqslant 0$ ，and $|f|=f_{+}+f_{-}$and then $f_{A} f$ exists $\Leftrightarrow f_{A} f_{+} \& f_{A} F_{-}$exist $\Longleftrightarrow \lim \int_{C_{n}} F_{+} \lambda \lim \int_{C_{n}} f_{-}$exist $\left.\Leftrightarrow \lim \int_{C_{n}} 1 F\right)$ exist and in that case， $\lim \int_{C_{n}} f_{1}=\lim \int_{C_{n}} f_{+} f_{-}=\lim \int_{C_{n}} f_{+}-\lim \int_{C_{n}} f_{-}=f_{A} f_{+}-\frac{f_{A}}{f_{A}} f_{-}=\xi_{A} f_{\text {a }}$ ．
The If A is open in \mathbb{R}^{n} and $f k g$ we cont：

$$
\text { 1. } \xi_{A} a f+b g=a f_{A} f+b b_{A} g \quad \text { 2. } \int f \leqslant \int g \&|f f| \leqslant \int|f|
$$

3．If $B C A, \quad \int_{B} f \leqslant \int_{A} f$
4．If $A k B$ are open and A is integrable on $A \& B$ ，

$$
\int_{A^{\cup} B} F=\int_{A} F+\int_{B} F-\int_{A \cap B} F
$$

Thy If $A \subset \mathbb{R}^{n}$ is bad open \＆$F: A \rightarrow \mathbb{R}$ is bid cont．， Then $f_{A} f$ exists．If Also $\oiint_{A} f$ exists，Ten $f_{A} f=\phi_{A} f$ ． proof［possibly skip］1．For $D C A$ compact vadificblo， $\int|f| \leq\left(\begin{array}{c}\text { ban n on }\end{array}\right) \cdot\binom{$ vol of }{ vel t containing 4} ， so \＆exists．
so $\hbar_{A} f$ exists.
2. If $f \geqslant 0, \int_{D} f \leqslant\left.\int_{Q} f\right|_{A}=: \beta_{A} f$, so $\oint_{A} f \leqslant \oint_{A} f$.

Also, for any partition P of Q,

$$
\begin{aligned}
& L\left(f \|_{A}, p\right)=\sum_{k \in p} m_{R}\left(\left.f\right|_{A}\right) v(R)=\sum_{\substack{K \in P \\
K \subset A}} m_{R}(f) v(R) \leqslant \sum_{\substack{R \in P \\
K \in A}} \sum_{K} f=\oint_{D} f \leqslant f_{D} f \\
& \text { where } D=\bigcup_{\substack{k+r \\
k C A}} K \text { is capet rutifingle }
\end{aligned}
$$

so $\beta_{A} F \leqslant \xi_{A} f$, so $\oint_{A} F=\xi_{A} F$.
Now if $F=F_{+}-f_{-} \quad w / F_{T}=\max (f, 0) \quad k f_{-}=\max (-f, 0)$ then $f_{+} \& E$ are integrable so

$$
\beta_{A} F=\phi_{A} F_{+}-f_{-}=\phi_{A} F_{+}-\phi_{A} F_{-}=\oint_{A} f_{+}-\oint_{A} F_{-}=\oint_{A} f
$$

corollary. S is bud k $F i S ~ \rightarrow \mathbb{R}$ is bid cont., then $\xi_{s} f=$ int f
Thy. (possibly skip) LAt $A \subset \mathbb{R}^{n}$ be open, $f: A \rightarrow \mathbb{R}^{n}$ cont, $U_{1} \subset U_{2} \subset \ldots$ open sets s.t. $\cup V_{k}=A$. Then $E_{A} f$ exists iff $\int_{U_{k}}|f|$ exist and ane Lad, and then, $\xi_{A} F=\lim _{k \rightarrow \infty} f_{U_{k}} F$.
Examples 1. $f(x, y)=\frac{1}{x^{2} y^{2}}$ on $A=(1, \infty) \times(1, \infty)$
2. Same f on $(0,1) \times(0,1)$.

