The Bare Necessities

1. http://drorbn.net/1617-257 2 . This will be a tough class. 3 . The essence: $\int_{M} d \omega=\int_{\partial M} \omega$, "Stokes' Theorem".

Like $\int_{a}^{b} f^{\prime}=\left.f\right|_{a} ^{b}$, yet: What's M ? What's ∂M ? What's ω ? What's $d \omega$? What's \int ? Why true? Why care?
Table 18-1 Classical Physics

Preview: A Bit on Maxwell's Equations

Prerequisites.

- Poincaré's Lemma, which says that on \mathbb{R}^{n}, every closed form is exact. That is, if $d \omega=0$, then there exists η with $d \eta=\omega$.
- Integration by parts: $\int \omega \wedge d \eta=$ $-(-1)^{\operatorname{deg} \omega} \int(d \omega) \wedge \eta$ on domains that have no boundary.
- The Hodge star operator \star which satisfies $\omega \wedge \star \eta=$ $\langle\omega, \eta\rangle d x_{1} \cdots d x_{n}$ whenever ω and η are of the same degree.
- The simplesest least action principle: the extremes of $q \mapsto \int_{a}^{b}\left(\frac{1}{2} m \dot{q}^{2}(t)-V(q(t))\right) d t$ occur when $m \ddot{q}=-V^{\prime}(q(t))$. That is, when $F=m a$.

II. $\quad \mathrm{V} \times E=-\frac{\partial B}{\partial t} \quad$ (Line integral of E around a loop) $=-\frac{d}{d t}$ (Flux of B through the loop)
III. $\boldsymbol{\nabla} \cdot \boldsymbol{B}=0 \quad$ (Flux of \boldsymbol{B} through a closed surface) $=0$
IV. $c^{2} \nabla \times B=\frac{j}{\epsilon_{0}}+\frac{\partial E}{\partial t}$
c^{2} (Integralof B around a loop $)=($ Current through the loop $) / \epsilon_{0}$
$+\frac{\partial}{\partial t}$ (Flux of E through the loop)
$\left[\begin{array}{c}\text { Conservation of charge } \\ \nabla \cdot \boldsymbol{j}=-\frac{\partial \rho}{\partial r}\end{array}\right.$
(Flux of current through a closed surface) $=-\frac{\partial}{\partial t}$ (Charge inside) $]$
Force law
$F=q(E+v \times B)$
Law of motion
$\frac{d}{d t}(p)=F, \quad$ where $\quad p=\frac{m v}{\sqrt{1-v^{2} / c^{2}}} \quad$ (Newton's law, with Einstein's modification)
Gravitation

$$
F=-G \frac{m_{1} m_{2}}{r^{2}} e_{r}
$$

The Feynman Lectures on Physics vol. II, page 18-2

The Action Principle. The 4-Vector Potential is a compactly supported 1-form A on \mathbb{R}^{4} which extremizes the action

$$
S_{J}(A):=\int_{\mathbb{R}^{4}} \frac{1}{2}\|d A\|^{2} d t d x d y d z+J \wedge A
$$

where the 3 -form J is the charge-current.
The Euler-Lagrange Equations in this case are $d \star d A=J$, meaning that there's no hope for a solution unless $d J=0$, and that we might as well (think Poincaré's Lemma!) change variables to $F:=d A$. We thus get

$$
d J=0 \quad d F=0 \quad d \star F=J
$$

These are the Maxwell equations! Indeed, writing $F=\left(E_{x} d x d t+E_{y} d y d t+E_{z} d z d t\right)+\left(B_{x} d y d z+B_{y} d z d x+B_{z} d x d y\right)$ and $J=\rho d x d y d z-j_{x} d y d z d t-j_{y} d z d x d t-j_{z} d x d y d t$, we find:

$d J=0 \Longrightarrow$	$\frac{\partial \rho}{\partial t}+\operatorname{div} j=0$	"conservation of charge"
$d F=0 \Longrightarrow$	$\operatorname{div} B=0$	"no magnetic monopoles"
$d * F=J \Longrightarrow$	$\operatorname{div} E=-\rho$	that's how generators work!
	$\operatorname{curl} E=-\frac{\partial B}{\partial t}$	"electrostatics"
	$\operatorname{curl} B=-\frac{\partial E}{\partial t}+j$	that's how electromagnets work!

Exercise. Use the Lorentz metric to fix the sign errors.
Exercise. Use pullbacks along Lorentz transformations to figure out how E and B (and j and ρ) appear to moving observers.
Exercise. With $d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}$ use $S=m c \int_{e_{1}}^{e_{2}}(d s+e A)$ to derive Feynman's "law of motion" and "force law".

Quick Review of some Linear Algebra

Let V be a vector space. A set $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ of vectors in V is said to span V if to each \mathbf{x} in V, there corresponds at least one m-tuple of scalars c_{1}, \ldots, c_{m} such that

$$
\mathbf{x}=c_{1} \mathbf{a}_{1}+\cdots+c_{m} \mathbf{a}_{m}
$$

In this case, we say that \mathbf{x} can be written as a linear combination of the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$.

Theorem 1.2. Let V be a vector space of dimension m. If W is a linear subspace of V (different from V), then W has dimension less than m. Furthermore, any basis $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}$ for W may be extended to a basis $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}, \mathbf{a}_{k+1}, \ldots, \mathbf{a}_{m}$ for V.

Theorem 1.6. If B is the matrix obtained by applying an element tary row operation to A, then

$$
\operatorname{rank} B=\operatorname{rank} A
$$

If V has a basis consisting of m vectors, we say that m is the dimensio? of V. We make the convention that the vector space consisting of the zero vector alone has dimension zero.

The set of matrices has, however, an additional operation, called matrix multiplication. If A is a matrix of size n by m, and if B is a matrix of size m by p, then the product $A \cdot B$ is defined to be the matrix C of size n by p whose general entry $c_{i j}$ is given by the equation

$$
c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}
$$

The set $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ of vectors is said to be independent if to each \mathbf{x} in V there corresponds at most one m-tuple of scalars c_{1}, \ldots, c_{m} such that

$$
\mathbf{x}=c_{1} \mathbf{a}_{1}+\cdots+c_{m} \mathbf{a}_{m} .
$$

Equivalently, $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$ is independent if to the zero vector $\mathbf{0}$ there corresponds only one m-tuple of scalars d_{1}, \ldots, d_{m} such that

$$
\mathbf{0}=d_{1} \mathbf{a}_{1}+\cdots+d_{m} \mathbf{a}_{m}
$$

namely the scalars $d_{1}=d_{2}=\cdots=d_{m}=0$.
Theorem 1.4. Let V be a vector space with basis $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$. Let W be a vector space. Given any m vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ in W, there is exactly one linear transformation $T: V \rightarrow W$ such that, for all i, $T\left(\mathrm{a}_{\mathrm{i}}\right)=\mathrm{b}_{\mathrm{i}}$.

Theorem 1.1. Suppose V has a basis consisting of m vectors. Then any set of vectors that spans V has at least m vectors, and any set of vectors of V that is independent has at most m vectors. In particular, any basis for V has exactly m vectors.

Theorem 1.5. For any matrix A, the row rank of A equals the column rank of A.
(5) For each k, there is a k by k matrix I_{k} such that if A is any n by m matrix,

$$
I_{n} \cdot A=A \quad \text { and } \quad A \cdot I_{m}=A .
$$

(1) Exchange rows i_{1} and i_{2} of A (where $i_{1} \neq i_{2}$).
(2) Replace row i_{1} of A by itself plus the scalar c times row i_{2} (where $i_{1} \neq i_{2}$).
(3) Multiply row i of A by the non-zero scalar λ.

Theorem 1.3. If A has size n by m, and B has size m by p, then
(1) $A \cdot(B \cdot C)=(A \cdot B) \cdot C$.
(2) $A \cdot(B+C)=A \cdot B+A \cdot C$.
(3) $(A+B) \cdot C=A \cdot C+B \cdot C$.
(4) $(c A) \cdot B=c(A \cdot B)=A \cdot(c B)$.
$\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)^{,}$,
$c \mathrm{x}=\left(c x_{1}, \ldots, c x_{n}\right)$.
(1) $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$.
(2) $\langle\mathbf{x}+\mathbf{y}, \mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{z}\rangle+\langle\mathbf{y}, \mathbf{z}\rangle$.
(3) $\langle c \mathbf{x}, \mathbf{y}\rangle=c\langle\mathbf{x}, \mathrm{y}\rangle=\langle\mathbf{x}, \mathrm{cy}\rangle$.
(4) $\langle\mathbf{x}, \mathbf{x}\rangle>0$ if $\mathbf{x} \neq \mathbf{0}$.
(1) $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$.
(2) $\mathbf{x}+(\mathbf{y}+\mathbf{z})=(\mathbf{x}+\mathbf{y})+\mathbf{z}$.
(3) There is a unique vector 0
(4) $\mathbf{x}+(-1) \mathbf{x}=\mathbf{0}$.
(5) $1 x=x$.
(6) $c(d \mathbf{x})=(c d) \mathbf{x}$.
(7) $(c+d) \mathbf{x}=c \mathbf{x}+d \mathbf{x}$.
(8) $c(x+y)=c x+c y$.
$B=\left[\begin{array}{cccccc}* & * & * & * & * & * \\ \hdashline 0 & \oplus & * & * & * & * \\ 0 & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(1) $T(x+y)=T(x)+T(y)$.
(2) $T(c \mathbf{x})=c T(\mathbf{x})$.
$C=\left[\begin{array}{llllll}1 & 0 & * & 0 & * & * \\ 0 & 1 & * & 0 & * & * \\ 0 & 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
$\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n}$.
(1) $\left(A^{\mathrm{tr}}\right)^{\mathrm{tr}}=A$.
(2) $(A+B)^{\mathrm{tr}}=A^{\mathrm{tr}}+B^{\mathrm{tr}}$.
(3) $(A \cdot C)^{\mathrm{tr}}=C^{\mathrm{tr}} \cdot A^{\mathrm{tr}}$.
(4) rank $A^{\text {tr }}=\operatorname{rank} A$.
(1) $\|\mathbf{x}\|>0$ if $\mathbf{x} \neq 0$.
(2) $\|c x\|=|c|\|x\|$.
(3) $\|\mathbf{x}+\mathbf{y}\| \leq\|x\|+\|y\|$.
(3') $\|\mathbf{x}-\mathbf{y}\| \geq\|\mathbf{x}\|-\|\mathbf{y}\|^{3}$.
$|\mathbf{x}|=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} . \mid T(\mathbf{x})=A \cdot \mathbf{x}^{2}$.
standard basis for \mathbf{R}^{n} :

$$
\begin{aligned}
\mathbf{e}_{1} & =(1,0,0, \ldots, 0), \\
\mathbf{e}_{2} & =(0,1,0, \ldots, 0), \\
& \ldots \\
\mathbf{e}_{n} & =(0,0,0, \ldots, 1) .
\end{aligned}
$$

$|\mathbf{x}| \leq\|\mathbf{x}\| \leq \sqrt{n}|\mathbf{x}| \cdot \mid\|\mathbf{x}\|=\langle\mathbf{x}, \mathbf{y}\rangle^{1 / 21}$.

$$
|A \cdot B| \leq m|A||B|
$$

