\qquad
Dror Bar-Natan: Classes: 2015-16: MAT 475 Problem Solving Seminar:
Quiz 8 on March 17, 2016: "Divide into Cases", "Work Backwards", and the Pigeonhole Principle. You have 25 minutes to solve the following two problems. Please write on both sides of the page.

Good Luck!

Problem 1 (near Larson's 2.5.11). Let T_{n} denote the number of ways of placing n nonattacking rooks on an $n \times n$ chessboard so that the resulting arrangement is symmetric about both diagonals. Find a recursive formula for T_{n}.
Problem 2 (near Larson's 2.6.10). Let α be any real number. Prove that among the numbers $\{\alpha, 2 \alpha, \ldots,(n-1) \alpha\}$ there is one that differs from an integer by at most $1 / n$. Hint. The bins could be $\left[\frac{1}{n}, \frac{2}{n}\right),\left[\frac{2}{n}, \frac{3}{n}\right), \ldots,\left[\frac{n-2}{n}, \frac{n-1}{n}\right)$.

