\qquad
Dror Bar-Natan: Classes: 2015-16: MAT 475 Problem Solving Seminar:
Quiz 4 on February 4, 2016: "Modify the Problem" / "Choose an Effective Notation". You have 30 minutes to solve as much as you can of the problems below. Please write on both sides of the page.

Good Luck!
Problem 1 (Larson's 1.4.3). Prove that there does not exist positive integers x, y, and z such that $x^{2}+y^{2}+z^{2}=2 x y z$.
Problem 2 (Larson's 1.5.10). A well known theorem asserts that a prime $p>2$ can be written as a sum of two perfect squares ($p=m^{2}+n^{2}$ with m and n integers) iff p is $1 \bmod 4$. Assuming this, prove:

1. Every prime which is $1 \bmod 8$ can be written as $x^{2}+16 y^{2}$, with x and y integers.
2. Every prime which is $5 \bmod 8$ can be written as $(2 x+y)^{2}+4 y^{2}$, with x and y integers.

Problem 3 (no credit, yet the best solutions will be advertised). What is your favourite "Modify the Problem" or "Choose an Effective Notation" problem?

