Pensieve header: Working with permutations, day 2.
From http://www.math.toronto.edu/drorbn/classes/16-1750-ShamelessMathematica/About.html: Possible Topics (in no particular order). Whatever you may suggest, and the Firs; ; arithm; 「-calculus; the Hopf fibration; Hilbert's 13th problem; Gat free Lie algebras; the Baker-Campbell-Hausdorff formula; wacky numbers; the Schwarz Lanterf; knot colourings; the Temperley-Lieb pairing; the dodecahedral link; sound experiments; barycentric subdivisions; a Peane; braid closures and Vogel's algorithm; the insolubility of the quintic, phase portraits; the Alamdelbret set; shadows of the Cantor Aerogel; quilt plots; some image transformations; De Bruijn graphs; the Riemann ; finite type invariants and the Willerton fish.

```
0+\sqrt{}{2}
\sqrt{}{2}
0.+\sqrt{}{2}
1.41421
a[n_] := N [\frac{(-1) n+1}{n}}]
Manipulate[
    s = 0.; k0 = 0; k1 = 0;
    ArrayPlot[Partition[Table[
        If[s > w,
            ++k0; s += a[2 k0]; 0,
            ++k1; s += a[2 k1 - 1]; 1
            ],
            {1024}
            ], 32], PlotLabel }->\mathrm{ s],
    {{w, Log[2]}, - 15, 15}
]
SetDirectory[
    "C:\\drorbn\\AcademicPensieve\\Classes\\16-1750-ShamelessMathematica"];
Get["160328-DraftPermutationsPackage.m"]
```

? PP
$P P[a, b, .$.$] gives the product of the permutations a, b, \ldots$
? t
Information::"notfound : Symbol t not found. >>

```
n=54;
\gamma1 = {18, 27, 36, 4, 5, 6, 7, 8, 9, 3, 11, 12, 13, 14, 15, 16, 17, 45, 2, 20, 21, 22, 23, 24, 25, 26, 44
    1, 29, 30, 31, 32, 33, 34, 35, 43, 37, 38, 39,40,41,42, 10, 19, 28, 52, 49, 46, 53,50, 47, 54,51, 48};
\gamma2 = {1, 2, 3, 4, 5, 6, 16, 25, 34, 10, 11, 9, 15, 24, 33, 39, 17, 18, 19, 20, 8, 14, 23, 32, 38, 26, 27, 28,
    29,7,13, 22, 31, 37, 35, 36, 12, 21, 30, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54};
\gamma3}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,31
    32, 33, 34, 35, 36, 48, 47, 46, 39, 42, 45, 38, 41, 44, 37, 40, 43, 30, 29, 28, 49, 50, 51, 52, 53, 54};
\gamma4 = {3,6,9,2,5,8,1,4,7,54,53,52,10, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
    29,30,31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 18, 17, 16};
\gamma5 ={13, 2, 3, 22, 5, 6, 31, 8, 9, 12, 21, 30, 37, 14, 15, 16, 17, 18, 11, 20, 29, 40, 23, 24, 25, 26, 27,
    10, 19, 28, 43, 32, 33, 34, 35, 36, 46, 38, 39, 49, 41, 42, 52, 44, 45, 1, 47, 48, 4,50, 51, 7, 53,54};
\gamma6 = {1, 2, 48, 4, 5, 51, 7, 8, 54, 10, 11, 12, 13, 14, 3, 18, 27, 36, 19, 20, 21, 22, 23, 6, 17, 26, 35, 28,
    29,30, 31, 32,9, 16, 25, 34, 37, 38, 15, 40, 41, 24, 43, 44, 33, 46, 47, 39, 49, 50, 42, 52, 53, 45};
$RecursionLimit = \infty; 林 }\mp@subsup{}{}{\circ}\mp@subsup{\tau}{-}{\prime}:= PP[\tau, \sigma]
Feed[Range [n]] := Null;
Feed[\mp@subsup{\tau}{_}{\prime}] := Module[{i, j, k, l},
    i = Min[PS[ []]; j = \tau\llbracketi\rrbracket;
    If[Head[\sigma 
        Feed[IP[\sigmai,j]}0\tau]
            (*Else*) 泣,j = \tau;
        For[k=1, k < n, ++k, For[l = k + 1, l < n, ++l,
```



```
            ]]
        ]];
Table[Feed[\gamma\alpha];
    \prod [i=1
{59.9219, {4, 16, 159993501696000, 21119142223872000,
    43252003274489856000,43252003274489856000}}
```

