R^{3} As Two Solid Tori

We would like a nice visual representation depicting 3-dimensional Euclidean space as being made up of two tori (well, really it is the 3 -Sphere which is the union of two tori). To do this we will first look at a Clifford Torus, specifically we will start by focusing our attention on the set of $(x, y, z, w) \in S^{3}$ such that

$$
x^{2}+y^{2}=\frac{1}{2}=z^{2}+w^{2} .
$$

And then through some rotations in 4-dimensional Euclidean space together with projecting into 3dimensional space using stereographic projection, we will see how we can partition R^{3} into two congruent pieces using a deformed (hollow) torus minus a point, as our dividing surface.

```
(*
```



```
    Since we will be looking at the Clifford Torus sitting inside S S ',
we have (after some simple algebra) that the stereographic
    projection function is given by the following expression.
*)
proj[x_, y_ , z_},\mp@code{w_}]:={\frac{x}{\sqrt{}{2}+w},\frac{y}{\sqrt{}{2}+w},\frac{z}{\sqrt{}{2}+w}
```

```
(*
We parameterize the above mentioned Clifford Torus
    by (Cos(s), Sin(s), Cos(t), Sin(t)) notice that we dont
    have to do any scaling here to ensure that we lie in S S ,
this is because the scaling was accounted for in the function,
proj, defined above.
    Plotting this guy yields the following surface
*)
ParametricPlot3D[
    proj[Cos[s], Sin[s], Cos[t], Sin[t]],
    {s, 0, 2\pi}, {t, 0, 2\pi},
    PlotRange }->{{-5,5},{-5,5},{-5,5}
]
```


(*
Now if we perform a rotation in R^{4} by an angle of $\pi / 2$ in the yw-plane, this amounts to mapping

$$
(x, y, z, w) \rightarrow(x,-w, z, y) .
$$

After performing this transformation and projecting the Clifford Torus from S^{3} into R^{3} we get the following surface.
*)
ParametricPlot3D[proj[Cos[s], -Sin[t], Cos[t], Sin[s]],
$\{s, 0,2 \pi\},\{t, 0,2 \pi\}$, PlotRange $\rightarrow\{\{-5,5\},\{-5,5\},\{-5,5\}\}]$


```
(*
Evidently the torus changed orientation, in particular,
we can see how the torus went about changing its orientation by
    looking at intermediate stages of the above rotation in the yw-plane,
namely, before mapping to R }\mp@subsup{R}{}{3}\mathrm{ via stereographic projection,
we first apply the transformation
    (x,y,z,w) ->(x, Cos(u)*y - Sin[u]*w, z, Sin(u)*y +Cos(u)*w),
where 0\leq u \leq \pi/2. To explicitly see the transformation we,
stick all of this into the Manipulate function,
and we get the following graphic.
    In particular, we find that at u = \pi/4 and u = 3\pi/4,
the tori from the figures above have been deformed so that they divide
    R}\mp@subsup{}{}{3}\mathrm{ into to symmetric pieces, namely the two solid tori we wanted.
    The graphic below starts with the rotation angle slightly less than \pi/4.
*)
Manipulate[ParametricPlot3D[
    proj[Cos[s], Cos[u] Sin[s] - Sin[u] Sin[t], Cos[t], Sin[u] Sin[s] + Cos[u] Sin[t]],
    {s, 0, 2\pi},{t, 0, 2\pi}, PlotRange }->{{-5,5},{-5,5},{-5, 5}}
    PlotStyle }->\mathrm{ {Opacity[0.9]}], {{u, T/4 - 0.0000001}, 0, 价
```



```
(*
Finally the following graphic shows these toric leaves from one half of the
    partition of R}\mp@subsup{R}{}{3}\mathrm{ together with their dual counterpart leaves from the other half.
*)
Manipulate[ParametricPlot3D[
    {proj[Cos[s], Cos[u] Sin[s] - Sin[u] Sin[t], Cos[t], Sin[u] Sin[s] + Cos[u] Sin[t]],
        proj[\operatorname{Cos[s], Cos[\frac{\pi}{2}-u] Sin[s] - Sin[\frac{\pi}{2}-u] Sin[t],},
        Cos[t], Sin[\frac{\pi}{2}-u] Sin[s] + Cos[\frac{\pi}{2}-u]\operatorname{Sin}[t]]},
    {s, 0, 2\pi},{t, 0, 2\pi}, PlotRange }->{{-5,5},{-5, 5},{-5, 5}}
    PlotStyle }->\mathrm{ {Directive[Opacity[0.8], Red, Specularity[White, 20]],
        Directive[Opacity[0.8], Blue, Specularity[White, 20]]},
    Mesh }->\mathrm{ None], {{u, 3 //16}, m/8, 3 </ 8}]
```


