This Mathematica notebook came about as a result of two things, the first, not suprisingly, was the fact thi MAT1750 and the second was because one of the classes I TA for was covering a somewhat computatio Newton's method for approximating roots of functions - by computation heavy I mean it required dusting (Of couse, all of these computations can be done manually (i.e., with any standard calculator), but why not

My attempt at defining a function to carry out newtons method:

```
NR[f_, start_, n_, p_: 7] := Module[{df, xn, i},
    (*
    f_ is a previously defined function,
    start_ is the x value at which to start the process,
    n_ is the term in the sequence you want,
    p_ is an optional percision value with default = 7
    *)
    If[n== 1, start,
        i = 2;
        xn = start;
        df[x_] = D[f[x], x];
        While[i\leqn, xn = xn - \frac{f[xn]}{df[xn] ; i++];}
        N[xn, p]
    ]
]
```

Let's test it out - we'll need some functions.

```
F[\mp@subsup{x}{-}{\prime}]:= \mp@subsup{x}{}{3}-2; (* This one to approximate \sqrt{3}{2}}\mathrm{ *)
G[x_] := Sin[x] '; (* This one for \pi *)
H[x_] := 1 - Log[x] (* And this one for e *)
```

How do we do approximating $\sqrt[3]{2}$ starting at $x=3 \ldots$

```
Grid[{{"n}\mp@subsup{n}{}{\mathrm{ th }}\mathrm{ term:", 3, 5, 7, 9}, Prepend[Table[N[每, 15], {i, 4}], " {
    Prepend[Table[NR[F, 3, i, 15], {i, 3, 9, 2}], "Our Approx:"]},
    Alignment }->\mathrm{ {{Right}, None},
    Background }->\mathrm{ {{Cyan}, None},
    Frame }->{\mathrm{ None, None, {{1, 1} }->\mathrm{ True, {2, 1} }->\mathrm{ True, {3, 1} }->\mathrm{ True } }]
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{n}^{\text {th }}\) term: & 3 & 5 & 7 & 9 \\
\hline \(\sqrt[3]{2}\) : & 1.25992104989487 & 1.25992104989487 & 1.25992104989487 & 1.25992104989487 \\
\hline Our Approx: & 1.53769053917863 & 1.26160180095504 & 1.25992104989885 & 1.25992104989487 \\
\hline
\end{tabular}
```

Not too bad, Let's try for π, we'll start at $\mathrm{x}=3.5$.

```
Grid[{{"n
    Prepend[Table[NR[G, 3, i, 15], {i, 3, 9, 2}], "Our Approx:"]},
    Alignment }->\mathrm{ {{Right}, None},
    Background }->\mathrm{ {{Cyan}, None},
    Frame }->{\mathrm{ None, None, {{1, 1} }->\mathrm{ True, {2, 1} }->\mathrm{ True, { { , 1} }->\mathrm{ True } }]
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{n}^{\text {th }}\) term: & 3 & 5 & 7 & 9 \\
\hline \(\pi\) : & 3.14159265358979 & 3.14159265358979 & 3.14159265358979 & 3.14159265358979 \\
\hline Our Approx: & 3.10649103014786 & 3.13282175366864 & 3.13939999889503 & 3.14104449101420 \\
\hline
\end{tabular}
```

Unfortunately, even the ninth term is only good to 3 decimal places, lets try the seventeenth term.

```
Grid[{{N[\pi, 15]},{NR[G, 3, 17, 15]}}]
3.14159265358979
3.14159051233002
```

Only FIVE decimal places, maybe this wasn't the best choice of function for approximating π. Let's move on to e, we'll start at $x=2$.

```
Grid[\{\{"n th term:", 3, 5, 7, 9\}, Prepend[Table[N[E, 15], \{i, 4\}], "e:"],
    Prepend[Table[NR[H, 2, i, 15], \{i, 3, 9, 2\}], "Our Approx:"]\},
    Alignment \(\rightarrow\) \{\{Right\}, None\},
    Background \(\rightarrow\) \{\{Cyan\}, None\},
    Frame \(\rightarrow\{\) None, None, \(\{\{1,1\} \rightarrow\) True, \(\{2,1\} \rightarrow \operatorname{True},\{3,1\} \rightarrow \operatorname{True}\}\}]\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{n}^{\text {th }}\) term: & 3 & 5 & 7 & 9 \\
\hline e: & 182845905 & 2.71828182845905 & 8182845905 & 2.71828182845905 \\
\hline \(r\) Approx & . 71624392635579 & 2.71828182845894 & . 71828182845905 & 2.7182818 \\
\hline
\end{tabular}
```

This one turned out pretty well - accurate to 15 decimal places by the 7 th term in the sequence!

Let's see how the varying the starting point changes things. We'll look at the 5 th term in the sequence, starting at $x=3.5,3.4,3.3$ and 3.2.

```
Grid[\{\{"Starting pt:", 3.5, 3.4, 3.3, 3.2\},
    Prepend[Table[N[ \(\pi, 15]\), \(\{i, 4\}], \quad " \pi: "]\),
    Prepend[Table[NR[G, i, 7, 15], \{i, 3.5, 3.2, -0.1\}], "Our Approx:"]\},
    Alignment \(\rightarrow\) \{\{Right\}, None\},
    Background \(\rightarrow\) \{\{Cyan\}, None\},
    Frame \(\rightarrow\{\) None, None, \(\{\{1,1\} \rightarrow\) True, \(\{2,1\} \rightarrow \operatorname{True},\{3,1\} \rightarrow \operatorname{True}\}\}]\)
\begin{tabular}{rlcccc}
\cline { 1 - 1 } Starting pt: & 3.5 & 3.4 & 3.3 & 3.2 \\
\cline { 1 - 1 }\(\pi\) & 3.14159265358979 & 3.14159265358979 & 3.14159265358979 & 3.14159265358979
\end{tabular}
```

Aside from our approximation getting better as we move closer to the root (as expected), for some reason

```
NR[F, 3.1, 7, 15]
```

1.25992

NR[F, 3, 7, 15]
1.25992104989885

NR[F, $\pi, 7,15]$
1.25992104992725

NR[F, 4.512345, 7, 15]
1.25992

I haven't been able to sort this out. Of course, one can always make use of the built in NSolve function.
NSolve [1-Log[x] == 0, x]
$\{\{x \rightarrow 2.71828\}\}$
Or even just the solve function to get a more precise solution
Solve $[1-\log [x]==0, x]$
$\{\{x \rightarrow \mathbb{e}\}\}$

