
Julia Set, Parallelization, &

Compilation
Jesse Bettencourt

Quick Intro

After the class on the Mandelbrot set visualization I attempted to implement some Julia set and other

iterated fractal set visualizations. Mathematica has a a built in function JuliaSetPlot which is already

extremely efficient at visualizing these iterated fractal sets because it implements the more efficient

method of orbit detection, instead of escape time algorithms. However, it’s limited in that it only accepts

rational functions. However pretty and efficient the built in Mathematica function is, as a learning exer-

cise I felt it was important to continue to try to implement my own, and experiment with methods of

improving efficiency.

Mathematica’s Built In Function

? JuliaSetPlot

Manipulate[

JuliaSetPlot[z^2 + realc + complexc * I, z],

{{realc, 0.3}, 0, 1}, {{complexc, 0.53}, 0, 1}]

Some Different Attempts By Me

In order to be competitive with the built in function, which will outperform my best attempt on most

function, I learned how to compile the Mathematica code to C with the Compile function. Here are some

different attempts for a computing the Julia set escape times at a complex number :

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: 2016-05-09 14:36:20

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks

(*Attempt 1*)

(*This is very similar to our in-class Mandelbrot implementation. *)

JuliaAttempt1NoComp[x_, y_, cx_, cy_, z_] :=

Module[{count = 0},

z = x + I y;

While[Abs[z] < 2.0 && count ≤ 250,

(*Iterated Function*)

z = z^2 + (cx + I * cy);

++count]; count]

JuliaAttempt2NoComp[Z_, c_] :=

Module[{count = 0, z = Z, limit = 250},

While[

Abs[z] < 2.0 && count ≤ limit,

(*Iterated Function*)

z = z^2 + c;

++count];

count]

Here’s my favourite attempt

I like this attempt because it is a lot more Mathematica in flavour. Namely, I left the procedural approach

of the While loop and instead used the function FixedPointList which generates a list of the outputs of a

function iteratedly reapplied until it either reaches a fixed point defined by the criterion SameTest or if it

reaches the maximum number of iterations 250.

Try playing with the function which is being iterated!

JuliaNoComp[z_, c_] := LengthFixedPointList

(*******ITERATED FRACTAL FUNCTION*******)

#^2 + c &,

(***************************)

z, 250,

SameTest → Abs[#] > 2. &

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: 2016-05-09 14:36:20

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks

resolution = 0.005;

First /@

{

Timing@Table[-JuliaAttempt1NoComp[x, y, 2.0625, 0.15], {y, -2, 2, resolution},

{x, -2, 2, resolution}],

Timing@

Table[-JuliaAttempt2NoComp[x + I y, 2.0625 + 0.15 I], {y, -2, 2, resolution},

{x, -2, 2, resolution}],

Timing@Table[-JuliaNoComp[x + I y, 2.0625 + 0.15 I], {y, -2, 2, resolution},

{x, -2, 2, resolution}]

}

Compile

Clear[JuliaAttempt1]

JuliaAttempt1 = Compile[{{x, _Real}, {y, _Real}, {cx, _Real}, {cy, _Real}},

Module[{z, count = 0},

z = x + I y;

While[Abs[z] < 2.0 && count ≤ 250,

(*Iterated Function*)

z = z^2 + (cx + I * cy);

++count]; count],

CompilationTarget → "C",

RuntimeOptions → "Speed"

];

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: 2016-05-09 14:36:20

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks

(*Attempt 2*)

(*This implementation is very similar to the first attempt,

except I wanted to see if Compile made better use of of directly input

Complex numbers z and c instead of attempt 1 which input the components

of both. It seemed that this actually made performance slightly worse,

though I still prefer it for clarity.*)

(*The other thing to note is that here I've changed the function we are

iterating. Particularily interesting is we can now iterate over non-

rational functions. Because of Mathematica's built in implementation methods,

only rational functions were permitted, so this is very exciting.*)

Clear[JuliaAttempt2]

JuliaAttempt2 = Compile[{{Z, _Complex}, {c, _Complex}},

Module[{count = 0, z = Z, limit = 250},

While[

Abs[z] < 2.0 && count ≤ limit,

(*Iterated Function*)

z = z^2 + c;

++count]; count],

CompilationTarget → "C",

RuntimeOptions → "Speed",

RuntimeAttributes → {Listable},

Parallelization → True

];

Julia = Compile{{z, _Complex}, {c, _Complex}},

LengthFixedPointList

(*******ITERATED FRACTAL FUNCTION*******)

#^2 + c &,

(***************************)

z, 250,

SameTest → Abs[#] > 2. &,

CompilationTarget → "C",

RuntimeOptions → "Speed",

RuntimeAttributes → {Listable},

Parallelization → True

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: 2016-05-09 14:36:20

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks

resolution = 0.005;

First /@ {

Timing@Table[-JuliaAttempt1[x, y, 2.0625, 0.15], {y, -2, 2, resolution},

{x, -2, 2, resolution}],

Timing@Table[-JuliaAttempt2[x + I y, 2.0625 + 0.15 I],

{y, -2, 2, resolution}, {x, -2, 2, resolution}],

Timing@Table[-Julia[x + I y, 2.0625 + 0.15 I],

{y, -2, 2, resolution}, {x, -2, 2, resolution}]

}

First /@ {

Timing@Table[-JuliaAttempt1[x, y, 2.0625, 0.15], {y, -2, 2, resolution},

{x, -2, 2, resolution}],

Timing@Table[-JuliaAttempt2[x + I y, 2.0625 + 0.15 I],

{y, -2, 2, resolution}, {x, -2, 2, resolution}],

Timing@Table[-Julia[x + I y, 2.0625 + 0.15 I],

{y, -2, 2, resolution}, {x, -2, 2, resolution}]

}

Parallelization

Initially I was using my newly compiled functions with the DensityPlot function, which takes my function

and applies it to on a grid over my specified plot range. However, I realized that this was not optimal

because I could be computing the Julia set for multiple points at once if I made use of multiple comput-

ing kernels. Mathematica makes it extremely easy to parallelize these sorts of tasks, so I learned how to

make use of those features here.

First things first is to initialize some Kernels with the availability of CPU cores. Depending on the power

of your CPU and the number of cores you have, your benefits for parallelization may vary.

LaunchKernels[];

Kernels[]

resolution = 0.005;

First /@ {

Timing@ParallelTable[-JuliaAttempt1[x, y, 2.0625, 0.15], {y, -2, 2, resolution},

{x, -2, 2, resolution}],

Timing@ParallelTable[-JuliaAttempt2[x + I y, 2.0625 + 0.15 I],

{y, -2, 2, resolution}, {x, -2, 2, resolution}],

Timing@ParallelTable[-Julia[x + I y, 2.0625 + 0.15 I],

{y, -2, 2, resolution}, {x, -2, 2, resolution}]

}

Now, instead of generating the Julia set inside the DensityPlot function, we will first create a table with

all of our values and then plot it after with ListDensityPlot. When we generate our table of values, we

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: 2016-05-09 14:36:20

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks

evaluate at complex coordinates (x,y) and Increment along the real and complex axis by the value of

the variable resolution, as this parameter corresponds with the quality of our plot.

Further, to make use of parallelization and the Kernels we’ve initialized, instead of the vanilla Table

function, we use ParallelTable, which automatically spreads the computations over our cores for us.

resolution = 0.005;

julialist = ParallelTable[-JuliaAttempt1[x, y, 0.4, 0.09],

{y, -2, 2, resolution}, {x, -2, 2, resolution}];

ListDensityPlot[julialist, Frame → False, PlotRangePadding → None]

Wow, that was pretty slow though.... Which is a shame. We’ve optimized the actual computation of the

set, only to have to wait for the density list to plot. Well, consider that we just want to visualize the set,

and don’t need all of the bells and whistles of having a density plot graphics object, which is expensive

but feature-rich. Instead, we can use Image!

(Note that I’ve tried many methods here, including ArrayPlot, Graphics@Raster, and a couple others.

Image is by far the fastest I’ve come across)

ShowFractal[fractalset_, colstring_: "StarryNightColors"] :=

Colorize[#, ColorFunction → colstring] &@Image@Rescale@fractalset

Colorize[Image[Rescale[-julialist]], ColorFunction → "StarryNightColors"]

Clear[JuliaAttempt1]

JuliaAttempt1 = Compile[{{x, _Real}, {y, _Real}, {cx, _Real}, {cy, _Real}},

Module[{z, count = 0},

z = x + I y;

While[Abs[z] < 2.0 && count ≤ 250,

(*Iterated Function*)

z = z^2 + (cx + I * cy) / z;

++count]; count],

CompilationTarget → "C",

RuntimeOptions → "Speed"

];

julialist2 = ParallelTable[

-JuliaAttempt1[x, y, 0.3, 0.8], {y, -2, 2, 0.005}, {x, -2, 2, 0.005}];

ShowFractal[julialist2, "SunsetColors"]

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: 2016-05-09 14:36:20

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks

Clear[JuliaAttempt1]

JuliaAttempt1 = Compile[{{x, _Real}, {y, _Real}, {cx, _Real}, {cy, _Real}},

Module[{z, count = 0},

z = x + I y;

While[Abs[z] < 2.0 && count ≤ 250,

(*Iterated Function*)

z = Tanh[z^2 + (cx + I * cy)];

++count]; count],

CompilationTarget → "C",

RuntimeOptions → "Speed"

];

julialist3 = ParallelTable[

-JuliaAttempt1[x, y, 0.3, 0.8], {y, -2, 2, 0.005}, {x, -2, 2, 0.005}];

ShowFractal[julialist3]

julialist4 = ParallelTable[

-JuliaAttempt1[x, y, 0.01, 0.3], {y, -2, 2, 0.005}, {x, -2, 2, 0.005}];

ShowFractal[julialist4]

Bonus: Playing with Time (uses Mathematica’s JuliaSetPlot)

animatelist = ParallelTable

JuliaSetPlotz^2 + 0.01 + 0.1 Sin[θ] I z^3, z,

Frame → False,

PlotRange → {{-1.2, 1.2}, {-1.2, 1.2}},

PlotRangePadding → None,

{θ, 0, 2 Pi, 0.1};

ListAnimate[Image /@ animatelist]

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: 2016-05-09 14:36:20

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks

