
Dancing with Friends and Enemies
Jesse Bettencourt

2016/01/26

Acknowledgment
This system was introduced to me by a post on the Wolfram Community forum Dancing with friends 

and enemies: boids’ swarm intelligence posted by Simon Woods. In his post, Woods describes the 

rules for a particle system in which each particle is a dancer with dancing rules. Woods also provides 

extremely concise Mathematica code, totaling only 8 lines, that fully describe and demonstrate this 

dance. I’ve written a far less concise implementation of this system, for personal understanding, prac-

tice with Mathematica, and also to allow me to tinker with the dancing rules to explore new behaviour.

Also, it’s worth mentioning that this particle system, like all dances, is best appreciated with some music.

The Dance
We are investigating a dance with n dancers. At the beginning of the dance, the dancers are scattered 

randomly around the dancefloor. Each dancer chooses at random a friend and an enemy among their 

fellow dancers. 

At each ‘beat’ of the dance, each dancer moves according to the following steps:

1. A step towards the center of the dancefloor.

2. A step towards their friend.

3. A step away from their enemy.

Further, at random intervals a dancer will re-choose their friend and enemy.

(*The Number of Dancers*)

n = 1000;

(*Randomly places dancers on the floor and chooses the friends and enemies*)

r := RandomInteger[{1, n}, n];

InitializeDance[dim_: 2] := Module[{x, friends, enemies},

x = RandomReal[{-1, 1}, {n, dim}];

friends = r;

enemies = r;

{x, friends, enemies}

]

{x, f, e} = InitializeDance[];

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: Bettencourt_Jesse_160126_dancing.nb2016-02-01 17:18:57

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks



(*In Woods' initial code, he had the random event for choosing a new partners

given by just a univariate 110

probability. I decided to sample a PoissonDistribution

with mean of 3 (chosen arbitrarily). And if

the sample is above a threshold parameter

then the partners switch. *)

NewPartnerQ[threshold_] := RandomVariate[PoissonDistribution[3]] ≥ threshold;

ReChoose[type_, i_] := ReplacePart[type, i -> RandomInteger[{1, n}]];

ChooseNewPartner[friends_, enemies_, thresh_: 4, numnew_: 1] :=

Module[{i}, If[NewPartnerQ[thresh],

i = RandomInteger[{1, n}];

{ReChoose[friends, i], ReChoose[enemies, i]},

{friends, enemies}]]

(*Here we have the functions which specify the steps of the dance. I could have

simplified this probably to one function but kept the separate functions because

of both legacy later and also to allow me to add new steps modularly.*)

DirectionVector[from_, to_] := Normalize /@ (to - from)

StepToCenter[from_, amount_: 0.008] := 1 - amount * from

StepToFriend[from_, friends_, amount_: 0.06] :=

from + amount * DirectionVector[from, from[[friends]]]

StepToEnemy[from_, enemies_, amount_: 0.02] :=

from - amount * DirectionVector[from, from[[enemies]]]

(*Here we have the most vanilla dance fuction,

with step sizes and threshold given by

the default settings.*)

Dance[x_, friends_, enemies_] := Module[{f = friends, e = enemies},

{f, e} = ChooseNewPartner[f, e];

{x // StepToCenter // StepToFriend[#, f] & // StepToEnemy[#, e] &, f, e}

]

(*This function gives all the parameter settings to play with later.*)

DanceParam[x_, friends_, enemies_, cs_, fs_, es_, thresh_] :=

Module[{f = friends, e = enemies},

{f, e} = ChooseNewPartner[f, e, thresh];

{x // StepToCenter[#, cs] & // StepToFriend[#, friends, fs] & //

StepToEnemy[#, enemies, es] &, f, e}

]

(*To make things easy, the code to plot the dance.*)

SeeDance[dancers_, plotrange_: 2] := Graphics[{PointSize[0.005], Opacity[0.6],

Point[dancers]}, PlotRange → plotrange]

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: Bettencourt_Jesse_160126_dancing.nb2016-02-01 17:18:57

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks



Here is the Vanilla Dance!

{x1, f1, e1} = InitializeDance[];

Dynamic[

{x1, f1, e1} = Dance[x1, f1, e1];

SeeDance[x1]

]

Now try Manipulating some of the parameters which determine the dance!

{x2, f2, e2} = InitializeDance[];

Dynamic@Manipulate[Graphics[{PointSize[0.005], Opacity[0.6], Dynamic[{x2, f2, e2} =

DanceParam[x2, f2, e2, centersize, friendsize, enemysize, threshold];

Point[x2]]}, PlotRange → plotrange], {{plotrange, 2, "Plot Range"}, 0.5, 5},

{{centersize, 0.005, "Center Step Size"}, 0, 0.02},

{{friendsize, 0.02, "Friend Step Size"}, 0, 0.1},

{{enemysize, 0.01, "Enemy Step Size"}, 0, 0.1},

{{threshold, 6, "Partner Switch Threshold"}, 0, 10}]

I’ve generated two pretty, different dances by changing these parameters

Module[{pts, friends, enemies},

{pts, friends, enemies} = InitializeDance[];

goodparams1 := {pts, friends, enemies, 0.0039, 0.0322, 0.01, 6};

Graphics[{PointSize[0.007], Opacity[0.7],

Dynamic[{pts, friends, enemies} = DanceParam @@ goodparams1;

Point[pts]]}, PlotRange → 3]]

Module[{pts, friends, enemies},

{pts, friends, enemies} = InitializeDance[];

goodparams2 := {pts, friends, enemies, .00525, 0.0708, 0.01, 4.8};

Graphics[{PointSize[0.007], Opacity[0.7],

Dynamic[{pts, friends, enemies} = DanceParam @@ goodparams2;

Point[pts]]}, PlotRange → 2]]

Dancing in Three Dimensions

Moving this dance to 3-dimensions is easy! Only two things needed to be done. The dancers needed to 

be initialized with a n×3 dimensional random array, and then Graphics needed to be changed to Graphic-

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: Bettencourt_Jesse_160126_dancing.nb2016-02-01 17:18:57

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks



s3D. That’s it!

SeeDance3D[dancers_, plotrange_: 2] := Graphics3D[{PointSize[0.005], Opacity[0.6],

Point[dancers]}, PlotRange → plotrange, SphericalRegion → True]

{x3, f3, e3} = InitializeDance[3];

Manipulate[

Dynamic[

{x3, f3, e3} =

DanceParam[x3, f3, e3, centersize, friendsize, enemysize, threshold];

SeeDance3D[x3, plotrange]], {{plotrange, 2, "Plot Range"}, 0.5, 5},

{{centersize, 0.005, "Center Step Size"}, 0, 0.02},

{{friendsize, 0.02, "Friend Step Size"}, 0, 0.1},

{{enemysize, 0.01, "Enemy Step Size"}, 0, 0.1},

{{threshold, 6, "Partner Switch Threshold"}, 0, 10}]

(*Do you know why this one FEELS faster?

{x3,f3,e3}=InitializeDance[3];

Dynamic@Manipulate[Graphics3D[{PointSize[0.007],Opacity[0.6],Dynamic[

{x3,f3,e3}=DanceParam[x3,f3,e3,centersize,friendsize,enemysize,threshold];

Point[x3]]},PlotRange→plotrange,SphericalRegion→True],

{{plotrange,2,"Plot Range"},0.5,5},

{{centersize,0.005,"Center Step Size"},0,0.02},

{{friendsize,0.02,"Friend Step Size"},0,0.1},

{{enemysize,0.01,"Enemy Step Size"},0,0.1},

{{threshold,6,"Partner Switch Threshold"},0,10}]*)

Multiple Partner Switches

In the vanilla dance by Woods, when it randomly comes time in the dance to switch partners, only one 

dancer chooses a new friend and enemy. I was interested in seeing the behaviour of a dance where a 

random number of dancers, m, switch their partners.

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: Bettencourt_Jesse_160126_dancing.nb2016-02-01 17:18:57

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks



(*Random sampling of a Poisson distribution to

determine number of dancers who choose new partners.

μ determines the mean of this distribution,

keep this away from the number of total dancers.*)

m[μ_] := RandomVariate[PoissonDistribution[μ]]

(*As before, these function chooses new partners for random dancers.*)

ReChooseMulti[type_, is_] := Module[{m = Length[is], rules},

rules = {#[[1]] -> #[[2]]} & /@ Transpose@{is, RandomInteger[{1, n}, m]};

ReplacePart[type, Flatten@rules]]

ChooseNewPartner[friends_, enemies_, thresh_: 4, μ_: 1] := If[NewPartnerQ[thresh],

i = RandomInteger[{1, n}, m[μ]];

{ReChooseMulti[friends, i], ReChooseMulti[enemies, i]},

{friends, enemies}]

(*I've updated the DanceParam function with this new parameter*)

DanceParamμ[x_, friends_, enemies_, cs_, fs_, es_, thresh_, μ_: 1] :=

Module[{f = friends, e = enemies},

{f, e} = ChooseNewPartner[f, e, thresh, μ];

{x // StepToCenter[#, cs] & // StepToFriend[#, friends, fs] & //

StepToEnemy[#, enemies, es] &, f, e}

]

Play around with the new parameter! Try to achieve a stable relationship between 

the threshold and number of dancers switching!

{x4, f4, e4} = InitializeDance[];

Dynamic@Manipulate[Graphics[{PointSize[0.007], Opacity[0.6], Dynamic[{x4, f4, e4} =

DanceParamμ[x4, f4, e4, centersize, friendsize, enemysize, threshold, μ];

Point[x4]]}, PlotRange → plotrange], {{plotrange, 2, "Plot Range"}, 0.5, 5},

{{centersize, 0.005, "Center Step Size"}, 0, 0.02},

{{friendsize, 0.02, "Friend Step Size"}, 0, 0.1},

{{enemysize, 0.01, "Enemy Step Size"}, 0, 0.1},

{{threshold, 6, "Partner Switch Threshold"}, 0, 10},

{{μ, 1, "Mean of Dancers Switching"}, 1, 100}]

Distance Matrix

Here I was just trying to visualize the structure of the distance matrix given between dancers.

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: Bettencourt_Jesse_160126_dancing.nb2016-02-01 17:18:57

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks



n = 1000;

(*Gives an m×m distance matrix between the first m dancers*)

DancerDistanceMatrix[dancers_, m_: 100] :=

ArrayPlot[Table[Norm[dancers[[i]] - dancers[[j]]], {i, 1, m}, {j, 1, m}]]

(*Similar thing, but gives an upper triangle instead of a full matrix.*)

DancerDistanceTriangle[dancers_, m_: 100] :=

ArrayPlot[Table[Norm[dancers[[i]] - dancers[[j]]], {i, 1, m}, {j, i + 1, m + 1}]]

{x5, f5, e5} = InitializeDance[];

Dynamic[{x5, f5, e5} = Dance[x5, f5, e5];

{SeeDance[x5], DancerDistanceMatrix[x5, 100], DancerDistanceTriangle[x5, 100]}]

(*Just a note, I included both. Initially I was using the

triangle because I figured it would be faster given that it

isn't computing the distance between two points twice. However,

it turns out it's MUCH slower. If I was really interested I'm

sure I could optimize this part much better.*)

{DancerDistanceMatrix[x5, 500] // Timing, DancerDistanceTriangle[x5, 499] // Timing}

{x6, f6, e6} = InitializeDance[];

Dynamic@

Manipulate[{Graphics[{PointSize[0.005], Opacity[0.6], Dynamic[{x6, f6, e6} =

DanceParamμ[x6, f6, e6, centersize, friendsize, enemysize, threshold, μ];

Point[x6]]}, PlotRange → plotrange], Dynamic@DancerDistanceMatrix[x6, 100]},

{{plotrange, 2}, 0.5, 5}, {{centersize, 0.005}, 0, 0.02},

{{friendsize, 0.02}, 0, 0.1}, {{enemysize, 0.01}, 0, 0.1},

{{threshold, 6}, 0, 10}, {μ, 1, 100}]

Clusters

My final experiment so far with the dancers is related to the density of the clusters they form. Woods’ 

called this system a ‘Boids swarm’, and I found what this is. Boids, pronounced a thick accented New 

Yorker would ‘birds’, is an artificial life program given by Craig Reynolds in 1986. Reynolds’ boids were 

given three simple instructions, and the emergent properties of this system is flocklike behaviour. 

Reyonld’s three boid properties are:

1. separation - steer to avoid crowding nearby boids

2. alignment - steer in the average direction of nearby boids

3. cohesion - steer to move to the center of mass of nearby boids.

Now, I didn’t want a flock of dancers, necessarily. However, I was interested in this notion of separation. 

I noticed that many of the dancers ended up in very dense clusters around each other, and I’d imagine 

that would be annoying at a dance. So here I include another step to the dance. At every beat of the 

dance, we assign each dancer to a cluster, given by Mathematica’s ClusteringComponents function. 

Then, we find the average position for each cluster. The new step to the dance is that every dancer now 

takes a step away from their personal cluster center.

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: Bettencourt_Jesse_160126_dancing.nb2016-02-01 17:18:57

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks



(*Simple function to move away from given cluster centers*)

StepFromCluster[dancers_, centers_, amount_: 0.008] :=

dancers - amount * DirectionVector[dancers, centers]

(*A Dance with steps away from cluster*)

DanceCluster[x_, friends_, enemies_] :=

Module[{f = friends, e = enemies, components, clusters, clustermeans, centers},

{f, e} = ChooseNewPartner[f, e];

(*Determine the cluster each dancer belongs to*)

components = ClusteringComponents[x, 5, 1];

clusters = MapThread[List, {x, components}];

(*Determine the average position of the cluster*)

clustermeans = Mean /@ GroupBy[clusters, Last → First] // Values;

centers = clustermeans[[components]];

(*Include a step from those cluster centers*)

{x // StepToCenter // StepToFriend[#, f] & // StepToEnemy[#, e] & //

StepFromCluster[#, centers] &, f, e}

]

(*Same as above but with fine tuning of parameters*)

DanceClusterParam[x_, friends_,

enemies_, cs_, fs_, es_, thresh_, μ_: 1, clus_: 0.02] :=

Module[{f = friends, e = enemies, components, clusters, clustermeans, centers},

{f, e} = ChooseNewPartner[f, e, thresh, μ];

components = ClusteringComponents[x, 10, 1];

clusters = MapThread[List, {x, components}];

clustermeans = Mean /@ GroupBy[clusters, Last → First] // Values;

centers = clustermeans[[components]];

{x // StepToCenter[#, cs] & // StepToFriend[#, friends, fs] & //

StepToEnemy[#, enemies, es] & // StepFromCluster[#, centers, clus] &, f, e}

]

See this less clustered dance in action

{x7, f7, e7} = InitializeDance[];

Dynamic[

{x7, f7, e7} = DanceCluster[x7, f7, e7];

SeeDance[x7]

]

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: Bettencourt_Jesse_160126_dancing.nb2016-02-01 17:18:57

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks



Play with all the parameters!
n = 1000;

{x8, f8, e8} = InitializeDance[];

Manipulate[Dynamic[{x8, f8, e8} = DanceClusterParam[

x8, f8, e8, centersize, friendsize, enemysize, threshold, μ, clus];

SeeDance[x8, plotrange]], {{plotrange, 2, "Plot Range"}, 0.5, 5}, {{centersize,

0.008, "Center Step Size"}, 0, 0.02}, {{friendsize, 0.06, "Friend Step Size"},

0, 0.1}, {{enemysize, 0.02, "Enemy Step Size"}, 0, 0.1}, {{threshold, 5,

"Partner Switch Threshold"}, 0, 10}, {{μ, 1, "Mean of Dancers Switching"},

1, 100}, {{clus, 0.008, "Cluster Step Size"}, 0, 0.05}]

And of course, it all works in 3D! (also in n-dimensions but that’s not so visual)

{x9, f9, e9} = InitializeDance[3];

Manipulate[Dynamic[{x9, f9, e9} = DanceClusterParam[

x9, f9, e9, centersize, friendsize, enemysize, threshold, μ, clus];

SeeDance3D[x9, plotrange]], {{plotrange, 2, "Plot Range"}, 0.5, 5}, {{centersize,

0.008, "Center Step Size"}, 0, 0.02}, {{friendsize, 0.06, "Friend Step Size"},

0, 0.1}, {{enemysize, 0.02, "Enemy Step Size"}, 0, 0.1}, {{threshold, 5,

"Partner Switch Threshold"}, 0, 10}, {{μ, 1, "Mean of Dancers Switching"},

1, 100}, {{clus, 0.008, "Cluster Step Size"}, 0, 0.05}]

Multiple Friends (Not Interesting!)

Dror Bar-Natan: Academic Pensieve: Classes: 16-1750-ShamelessMathematica: StudentProjects: Bettencourt_Jesse_160126_dancing.nb2016-02-01 17:18:57

http://drorbn.net/AcademicPensieve/Classes/16-1750-ShamelessMathematica/StudentProjects/#MathematicaNotebooks


