50

54

1.11. Consider Extreme Cases

Tuesday Jan 6, hour 1: Search for a Pattern

January-04-15 10:38 AM

Go over index, About, Larson's page 8?

	=
Chapter 1. Heuristics	1
1.1. Search for a Pattern	2
1.2. Draw a Figure	9
1.3. Formulate an Equivalent Problem	15
1.4. Modify the Problem	22
1.5. Choose Effective Notation	25
1.6. Exploit Symmetry	30
1.7. Divide into Cases	36
1.8. Work Backward	40
1.9. Argue by Contradiction	45
1.10. Pursue Parity	47

1.1.1. Prove that a set of n (different) elements has exactly 2^n (different) subsets.

Toolry

1.12. Generalize

1.1.2. Let $S_{n,0}$, $S_{n,1}$, and $S_{n,2}$ denote the sum of every third element in the *n*th row of Pascal's Triangle, beginning on the left with the first element, the second element, and the third element respectively. Make a conjecture concerning the value of $S_{100,1}$.

Long line — but no line and $S_{100,1}$.

1.1.3. Let x_1, x_2, x_3, \ldots be a sequence of nonzero real numbers satisfying

$$x_n = \frac{x_{n-2}x_{n-1}}{2x_{n-2}-x_{n-1}}$$
, $n = 3, 4, 5, \dots$

Establish necessary and sufficient conditions on x_1 and x_2 for x_n to be an integer for infinitely many values of n.

1.1.4. Find positive numbers n and a_1, a_2, \ldots, a_n such that $a_1 + \cdots + a_n = 1000$ and the product $a_1 a_2 \cdots a_n$ is as large as possible.

1.1.5. Let S be a set and * be binary operation on S satisfying the two laws

$$x * x = x$$
 for all x in S,
 $(x * y) * z = (y * z) * x$ for all x, y, z in S.

Show that x * y = y * x for all x, y in S.

$$ab = (ab)(ab) = (b(ab))a = ((ab)a)b = ((ba)a)b = ((ba$$