\qquad
Dror Bar-Natan: Classes: 2014-15: MAT 475 Problem Solving Seminar:
Quiz 9 on March 17, 2015: "Pursue Parity". You have 25 minutes to solve two of the three problems below. Please write on both sides of the page.

Good Luck!
Marking Comment. My decision remains to simplify the management of this course and mark the quizzes myself, though at a delay of one week, in a symbolic acknowledgement of the ongoing TA strike.

Problem 1. Can you cover an 8×8 chessboard with 21 rectangles of size 3×1 and a single extra 1×1 square? If you can, what chessboard positions might the 1×1 square occupy? (You need to justify your assertions, of course). For reference, in the chessboard on the right, the rook is at position g 4.
Problem 2 (Larson's 1.10.1, reworded). Given 9 distinct points in \mathbb{Z}^{3}, show that there is some point in \mathbb{Z}^{3} which is exactly half way between two of these 9 points.

Problem 3 (Larson's 1.10.10, reworded). Show that for every positive integer a, the equation $x^{2}-y^{2}=a^{3}$ has solutions with $x, y \in \mathbb{Z}$.

